Divide-and-Conquer

Divide-and-conquer.

« Break up problem into several parts.

« Solve each part recursively.

« Combine solutions to sub-problems into overall solution.

Most common usage.
. Break up problem of size n into two equal parts of size zn.
« Solve two parts recursively.
« Combine two solutions into overall solution in linear time.
= Running time: O(n log n)

Mergesort

Mergesort.
. Divide array into two halves.
- Recursively sort each half.
» Merge two halves o make sorted whole.

. . Jon von Neumann (1945)
Running time: T(n)

A L G O R I T H M s divide 0O(1)
A G L O R H I M S T sort 2T(n/2)

A G H I L M O R S T merge O(n)

Merge.

« Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
= Repeat until done.

smallest

:

A

G

Merging

smallest

: g

H| I

auxiliary array

Merging

Merge.
« Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
= Repeat until done.

smallest smallest
A G| L O|R H I M| S | T

m auxiliary array

Merging

Merge.
« Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
= Repeat until done.

smallest smallest
A G| L O|R H I M| S | T

Al G ﬂ auxiliary array

Merging

Merge.
« Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
= Repeat until done.

smallest smallest
A G| L O|R H I M| S | T

A G H auxiliary array

Merging

Merge.
« Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
= Repeat until done.

smallest smallest
A G| L O|R H I M| S | T

A G| H | I auxiliary array

Merging

Merge.
« Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
= Repeat until done.

smallest smallest
A G| L O|R H I M| S | T

A G H I L m auxiliary array

Merging

Merge.
« Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
= Repeat until done.

smallest smallest
A G| L O|R H I M| S | T

A|G H I L M n auxiliary array

Merging

Merge.
« Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
= Repeat until done.

smallest smallest
A G| L O|R H I M| S | T

A|lG H| I L M| O n auxiliary array

Merge.

Merging

« Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.

= Repeat until done.

first half
exhausted

: g

A G|L O R

smallest

. g

H I M

S| T

auxiliary array

13

Merge.

Merging

« Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.

= Repeat until done.

first half
exhausted
smallest
A G| L O|R H I S| T
A|G|H L M|o s IEN

auxiliary array

14

Merging

Merge.
« Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
= Repeat until done.

first half second half
exhausted exhausted
A G| L O|R H I M| S | T

A/lG H/ I L MO R|S | T auxiliary array

15

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

0 if n=1
T(n) < &T([n/2])J + ¥T(|n/2])J + Z otherwise
solve left half solve riéht half ~ MCrgng

Solution. T(n) = O(n log, n).

16

Proof by Recursion Tree

sorting both halves merging

0 if n=1
T(n) = 2T(n/2) + n otherwise

n
n/2 n/2
n/4 n/4 n/4 n/4
2 2 2 2 2 2 2

lngn

2(n/2)
4(n/4)
2k(n / 2¥)

n/2 (2)

nlog,h
17

