algorithm design techniques

Divide & Conquer

Reduce problem to one or more sub-problems of
the same type

Typically, each sub-problem is at most a constant
fraction of the size of the original problem

Subproblems typically disjoint
Combine solutions

Examples:

Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (roughly)



merge SOrt

MS(A: array[l..n]) returns array[l..n] { A _ K -

lf(n=1) return A;
New U:array[l:n/2] = MS(A[I..n/2]);

b\
R
-y
N

New L:array[l:n/2] = MS(A[n/2+1..n]);
Return(Merge(U,L));

}

Merge(U,L: array[l..n]) {

& )
L
New C: array[l..2n]; \/ \L/‘ \/

a=I; b=1; :
. split sort merge
Fori=1to 2n

CJi] = “smaller of U[a], L[b] and correspondingly a++ or b++”;
Return C;

}



why balanced subdivision?

Alternative "divide & conquer" algorithm:
Sort n-|

Sort last |

Merge them

T(n)=T(n-1)+T(l)+n forn>2
T(1)=0
Solution: n + (n-1) + (n-2) ... = O(n?)



divide & conquer — the key idea

Suppose we've already invented Bubble-Sort,
taking time n?

Try Just One Level of divide & conquer:
Bubble-Sort(first n/2 elements)

Bubble-Sort(last n/2 elements)

Merge results

Time:| 2 (n/2)? + n =n%2 + n K n?

D&C in a
nutshell

Almost twice as fast!



d&c approach, cont.

“two halves are better than a whole”

Two problems of half size are better than one full-size
problem, even given O(n) overhead of recombining, since
the base algorithm has super-linear complexity.

“the more dividing and conquering, the better”

Two levels of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is growing.

Best is usually full recursion down to some small constant
size (balancing "work" vs "overhead").

In the limit: you’ve just rediscovered mergesort!



d&c approach, cont.

unbalanced division less good, but still good

Bubble-sort improved with 0.1/0.9 split:
(.In)2+ (9n)2+ n=.82n?+n

The 18% savings compounds significantly if you carry recursion to
more levels, actually giving O(nlogn), but with a bigger constant.
So worth doing if you can’t get 50-50 split, but balanced is better
if you can.

This is intuitively why Quicksort with random splitter is good —
badly unbalanced splits are rare, and not instantly fatal.



A Divide & Conquer Example:
Closest Pair of Points



closest pair of points: non—geometﬂc version

Given n points and arbitrary distances between them,
find the closest pair. (E.g., think of distance as airfare
— definitely not Euclidean distance!)

(... and all the rest of the (}) edges...)

Must look at all n choose 2 pairwise distances, else
any one you didn’t check might be the shortest.



closest pair of points: 1 dimensional version

Given n points on the real line, find the closest pair

Closest pair is adjacent in ordered list
Time O(n log n) to sort, if needed
Plus O(n) to scan adjacent pairs

Key point: do not need to calc distances between all
pairs: exploit geometry + ordering



closest pair of points: 2 dimensional version

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.

Graphics, computer vision, geographic information systems, molecular
modeling, air traffic control.

Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with O(n?) time.
|-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

T

Just to simplify presentation



closest pair of points

Algorithm.
Divide: draw vertical line L with = n/2 points on
each side.
([ L ® o ([




closest pair of points

Algorithm.

Divide: draw vertical line L with = n/2 points on
each side.

Conquer: find closest pair on each side, recursively.




closest pair of points

Algorithm.

Divide: draw vertical line L with = n/2 points on
each side.

Conquer: find closest pair on each side, recursively.

Combine to find closest pair overall seems
like
Ret o(n?) ?
o L ® o o
o o o
o ° ® o °
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closest pair of points

Find closest pair with one point in each side,
assuming distance < 0.




closest pair of points

Find closest pair with one point in each side,
assuming distance < 0.

Observation: suffices to consider points within 6 of line L.




closest pair of points

Find closest pair with one point in each side,
assuming distance < 0.

Observation: suffices to consider points within 6 of line L.

Almost the one-D problem again: Sort points in 26-strip by
their y coordinate.
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closest pair of points

Find closest pair with one point in each side,
assuming distance < 0.

Observation: suffices to consider points within d of line L.

Almost the one-D problem again: Sort points in 2d-strip by
their y coordinate. Only check pts within 8 in sorted list!

(] L ® o (]
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closest pair of points

Claim: No two points lie in the
same '/26-by-/26 box. e
® i
o
%) O /26
@ '/26
o
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closest pair of points

Claim: No two points lie in the
same '26-by-'26 box. | see o

]

Pf: Such points would be within |
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closest pair of points

Claim: No two points lie in the
same '/26-by-/26 box. coo

® i
Pf. Such points would be within
2 2
0 (1) +(l) =0 —_5£~075<5
2) \2 2 2 o
@ /26
Def. Let s have the it" smallest ; 2
y-coordinate among points o o 25 &

in the 26-width-strip.

Claim: If [i—j| > | I, then the cee
distance between s;and s;is > 8.



closest pair of points

Claim: No two points lie in the
same '/26-by-/26 box. coo

® i
Pf. Such points would be within
2 2
0 (1) +(l) =0 —_5£~075<5
2) \2 2 2 o
@ /26
Def. Let s have the it" smallest ; 2
y-coordinate among points o o 25 48

in the 26-width-strip.

¢/
o
Claim: If|i—j| > |1, then the
distance between s;ands;is > 6. ;
Pf. only 1| boxes within +6 of y(s)).




closest pair algorithm

Closest-Pair(p;, .., Pn) {
if(n <= ??) return ?°?

Compute separation line L such that half the points
are on one side and half on the other side.

8; = Closest-Pair(left half)
[P Closest-Pair (right half)
o) min(51, 52)

Delete all points further than & from separation line

Sort remaining points p[l]..p[m] by y-coordinate.

for 1 =1..m
for k = 1.11
if itk <=m
O = min(d, distance(p[i], pl[it+k])):

return 6.



closest pair of points: analysis

Analysis, |: Let D(n) be the number of pairwise distance

calculations in the Closest-Pair Algorithm when run on n>|
points

0 n=1
< = 1
D) 2D(n/2) + 11n n>1} = D(m)=0(n logn)

BUT — that’s only the number of distance calculations

What if we counted running time!?



closest pair of points: analysis

Analysis, ll: Let T(n) be the running time in the Closest-Pair
Algorithm when run on n > | points

0 n=1 2
Tn) = { T(n/2) + O(nlogn) n>1 } = T(n)=0(nlog"n)

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points from scratch each time.

Sort by x at top level only.

Each recursive call returns 6 and list of all points sorted by y
Sort by merging two pre-sorted lists.

T(n) = 2T(n/2) + O(n) = T(n) = O(nlogn)



plan

Recurrences

Applications:
multiplying numbers
multiplying matrices

computing medians



d & ¢ summary

|dea:

“Two halves are better than a whole”

if the base algorithm has super-linear complexity.

“If a little's good, then more's better”

repeat above, recursively
Applications: Many.

Binary Search, Merge Sort, (Quicksort), Closest
points, Integer multiply,...



Recurrences

Above: Where they come
from, how to find them

Next: how to solve them



divide and conquer — master recurrence

T(n) = aT(n/b)+cnd then
a>bd = T(n) = O(N"*?) [many subprobs — leaves dominate]

a<b? = T(n) =O(n9) [few subprobs — top level dominates]

a=b? = T(n)=0 (nYlogn) [balanced — all log n levels contribute]

Fine print:
a2 Isb>013¢€,d2 05 ¥T(1) =c;

a, b, k, t integers.



Solve:  T(n) =aT(n/b) + cnd

0 | =af n cnd
al n/b ac(n/b)¢
2 a? n/b? a’c(n/b?)¢
i al n/bi al ¢ (n/b')¢
k-1 ak! n/bk!  akle(n/bk!)d
n = bk : k = |Ogbn k ak n/bk = | akT(I)

logyn i
Total Work: =Ei acnlb')

1=



a useful identity

Theorem:
| +x +x2+x3+ ...+ xk = (xX-1)/(x-1)

proof:

S=1l+x+x2+x3+ ... +xK
xS = X+ x2+x3+ ...+ xk+ xkt
xS-S = x|
S(x-1)= x<*1-]

S = (x*'-1)/(x-1)



T(1) =d
T(n) =aT(n/b) + cnd | a>bd

T(n) =N "" den/b'y

k I
| 2i-0% =
d \Y 50" dN\i
= cn 2 (a/b?)
=0 Xk+1 _1
( )logbn+l 1 1
&) - X -
=cnd ‘

()-1 (x = 1)



Solve:

T(1) =d
T(n) = aT(n/b) + cnd

,a > bd

d
n

_ (blogbn )d

_ bdlogb n
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S S

p—d e

©) ©)

i)} oQ
N N
—d S
0Q oQ



Solve:  T(1) =
T(n) =aT(n/b) +cnd ,a<bd

T(n) =" die(n /by

k I
z._ X =
_ logbn ; id =0
cn E /b
. log, n+l Xk-l_1 _1
d 1_(’7) X -1
=Cn
)
’ (x = 1)
<cn’

»
I- \b_d)
=0n?)



Solve:  T(1) =
Tn) =a T(n/b) +cnd | a =hd

log,n ;
T(n) =Y ' decn/b)

logbn ; 2
=Cn E /b’

= 0(n* log, n)



divide and conquer — master recurrence

T(n) = aT(n/b)+cnd for n > b then

a>bd = T(n) = O(N"*?) [many subprobs — leaves dominate]
a<b? = T(n) =O(n9) [few subprobs — top level dominates]

a=b? = T(n)=0 (nYlogn) [balanced — all log n levels contribute]

Fine print:
a2 Isb>013¢€,d2 05 ¥T(1) =c;

a, b, k, t integers.



Integer Multiplication



integer arithmetic

Add. Given two n-bit
integers a and b,
compute a + b.

Add o

co|loc - -
o |- O -
o |- O -
o |- - O

O(n) bit operations.




integer arithmetic

Add. Given two n-bit

I I I I I 0 I
integers a and b, 10 1 0 1 o
compute a + b - - ° e
) I 0 I 0 I 0 0 I
O(n) bit operations.
I 10101 0
oL 1o
Multiply. Given two n-bit AR R
. Multiply 000O0O0O0O0O
integers a and b, Tlehohilol
compute a X b. ']o]t]o] [0}
I 17010 1 0]l
The “grade school” method: ., ...,
(170101 0]l
0/000O0/0O0O0
ol 101 0000O0O0O00O00O0



integer arithmetic

Add. Given two n-bit

I I I I I 0 I
integers a and b, 0 10 1o
computea + b 1 B
) I 0 I 0 I 0 0 I
O(n) bit operations.
' 1'0/ 10 1|0
o o
. . . ' 1'0/ 10 1|0
Multiply. Given two n-bit T
. Multipl
integers a and b, = Tiolr[o[ o]
compute a X b. etojtiol
11010 101
The “grade school” method: ., ...,
1010 10 I
O(n?) bit operations. S EEECEEE
ol 1010000000000



divide & conquer multiplication: warmup

XY

To multiply two 2-digit integers:
Multiply four |-digit integers.
Add, shift some 2-digit integers to obtain result.

= 10-x, + x, |
= 10-y, + y, |
= (10- X, + xo) (10' y o+ yo) o

= 100 - x,y, + 10 (xlyo +xoyl) + XV

Same idea works for long integers —

can split them into 4 half-sized ints

Y1 Yo

X Xp

Xo * Yo

Xo* Y|

X %Yo

XX Y



divide & conquer multiplication: warmup

To multiply two n-bit integers:
Multiply four /2n-bit integers.
Add two '2n-bit integers, and shift to obtain result.

/2
= 2"7-x + x, 1 101 0101 yvy,
/2
= 2"y, + Y, S R R R R
nl/?2 nl/?2
B (2 x1+x0)(2 y1+y0) 0100 000 I XXYo
n nl/?2
= 2 -xy + 2 (x1yo+xoy1)+xoyo 1010 1001 X;Xy,
0010 001 | X, XY
0101 101 I %y,
T(n)=4T(n/2) + O(n)
0110 00O 0000 0OO |

recursive calls add, shift



divide & conquer multiplication: warmup

To multiply two n-bit integers:
Multiply four /2n-bit integers.
Add two '2n-bit integers, and shift to obtain result.

X —2”/2-x1+x0 1 101 0101 y,vy,
y = 2"y + y, F0 1111101y
Xy = (Zn/z'xﬁ Xo)(zn/z')ﬁ i yO) 0100 000 I XXy
= 2" xy, + 2" (X + Xod1) + XoY, 1010 100 | XXy,
0010 001 | XXy,

T(n) = 4T(n/2) + ©®m) = T(n)=0O(n") 1 i d

%f_/
recursive calls add, shift ol 10 |l 000 OO0OO0OO0O OOO/I



key trick: 2 multiplies for the price of 1:

XYy

a
p
a

(xl)’O + xo)’1)

Well, ok, 4 for 3 is
more accurate...

X4 + Xo

Yit Yo

(xl + xo) ()’1 + )’0)

XYt (x1)’0+x0)’1) T XoYo
ap — x,y, — X,



Karatsuba multiplication

To multiply two n-bit integers:
Add two "2n bit integers.
Multiply three "2n-bit integers.
Add, subtract, and shift '/2n-bit integers to obtain result.

= 2"%x + Xx,
y = 2"y +
xy = 2"-xy + 2”/2-(x1y0+x0y1) + Xo Vo
= 2" xy + 2”/2-((x1+x0)(y1+y0) - xlyl—xoyo) + X0V
A B A C C
Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit
integers in O(n'!~%) bit operations.

T(n) <3T(n/2)+0(n)
— T(n) — 0(n10g23) — O(n1.585)



multiplication — the bottom line

Naive: O(n?)
Karatsuba:  O(n'~>%-)

Amusing exercise: generalize Karatsuba to do 5 size
n/3 subproblems — O(n!4¢--)

Best known: O(n log n loglog n)
"Fast Fourier Transform”



Another Example:
Matrix Multiplication —

Strassen’ s Method



Multiplying Matrices

a,,by, +a,b, +a;by +a,b,,

ay by, + ay,b,, +ayby, +ayb,

ay by, +ay,b,, +ayby, +ayb,,

_a41b11 + by +agby +ayb,

by| b, by by]
by| by by by
by| by, by by
by| by by by

a,,b, +a,by, +a;by, +a,b,
ayby, +ay,b,, +ayb;, +ay,b,
ay,by, + ay,by, +ayby, +ay,b,,

ayb, +auby, +agb;, +a,b,

o

(@)

o

(¢}

n® multiplications, n3-n? additions

a,by, +ayby, +a;by, +a,b,
ay by, +ay,b,, +ayby, +ayb,,
ay,by, +ay,by, +ayby, +ayb,,

A3y + by, +aghy, +ayb,, _




Simple Matrix Multiply

fori=1ton
forj=1ton
Cli,j] =0
fork=1ton
C[i,j] = C[i,j] + Ali.k] = B[k,j]



Multiplying Matrices

ay Ay | as ay] [by by | by by

Ay Ay | Gy Ay, by, by | by by

a3 diyp  d3; Ay by, by, by by,
|y Ay Ayy Ay _b41 by, by by |

ay,by, +a,b, +aiby +ayb, | a,b, +a,b,rasbs, +a,b,,

a,by, +a,b, +ayby, +a,b,, |a,b, +a,b,, i+ ayby, +a,,b,,

ay by, +ayb,, +ayby +ayb,,  ayb, +ay,b,, +ayby, +ayb,

_a41b11 +apby +aghy +ayby,  ayb, +anhy +aghy +ayb,

o

(@]

o

o

ay,by, +ayby, +aiby, +a,b,
ay by, +ay,b,, +ayby, +ayb,
ay,by, +ay,by, +ayby, +ayb,,

Ay by + by, +aghy, +ayb,, _




Multiplying Matrices

b, b, b; b,]
by, by by by
by, by, | by by
by by | by by |

a,,by, +ay,b,, +aby, +ay,b,,

ay,by) + ayby, Hayby, + ag4b41

a,,b, +a,by, +aby, +a,b,,

aybyy +ayb,, + a23b3g + ag4b42

ay by, +ayb,, +ayby, +ayb,,

_a41b11 + by +agby +ayb,,

ay,by, +ayby, +ayby, +ay,b,,

ayb, +auby, +agb;, +a,b,

o

(@]

o

o

ay,by, +ayby, +aiby, +a,b,
ay by, +ay,b,, +ayby, +ayb,
ay,by, +ay,by, +ayby, +ayb,,

Ay by + by, +aghy, +ayb,, _




Multiplying Matrices

ay,b, +a,b, +a;b, +a.b, a.b,+a,b,+a,b, +a,b,|° a,b,+a,b,+a;b, +a,b,

I, ¢
(y by, +ayb,, +ayby va,b,  a, b+ asbh,, +ayby, +a,,b,, (y by + a5, + ayly, +dh,,

ay by, +ayb,, +ayby +ayh,  ayb, +0a.,b,, +ayub;, +ayb, ay,by, + ay,by, +ayby, +ay,b,,

g 7 )
_a41b11 tapby +aghy Fauby,  aybyFagby +aghy +aubyl o aybgtagby Faghy T agh, _




Multiplying Matrices

BEap
[

Counting arithmetic operations:
T(n) = 8T(n/2) + 4(n/2)?= 8T(n/2) + n?



Multiplying Matrices

I ifn=1
T(n) = {
8T(n/2) + n? if n> |

By Master Recurrence, if
T(n) = aT(n/b)+cn? & a > b9 then
T(n) = ©(n"**) =6(n"**) = 6(n’)



The algorithm

P, = A1(B+By)) P, = Ay (B121By,)

P;= (A1 - Ajp)By) Ps= (Ax- Ay)By,
Ps= (Ay- Ap)(By - By)

Pe= (A1 - Ay)(Bi2- Byy)

P7= (Ay1 - Ajp)(B1By))

C, = P+P; C), = P+P;+P¢-P;
C,= P/+P,+Ps+P; Cy, = P,*P,



Strassen’ s algorithm

Strassen’ s algorithm

Multiply matrices using / instead of & multiplications
(and lots more than 4 additions)

T(n)=7 T(n/2)+cn?
7>22 so T(n) is ®(n'°%") which is O(n28')

Fastest algorithms theoretically use O(n?37¢) time



