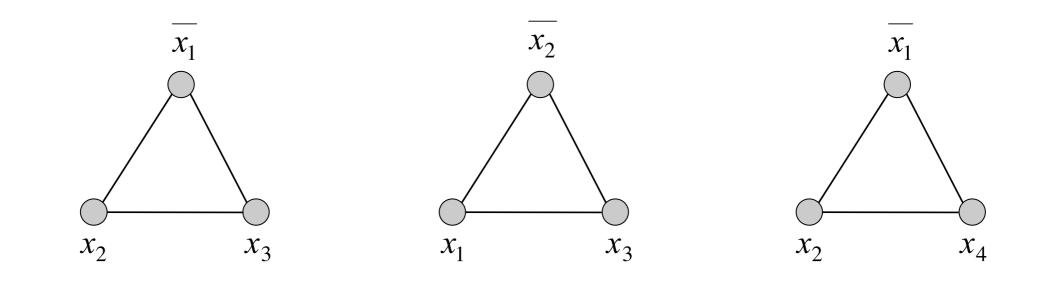
3-satisfiability reduces to vertex cover

Theorem. 3-SAT \leq_P VERTEX-COVER.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of VERTEX-COVER that has a vertex cover of size 2k iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.



 $\Phi = \left(\overline{x_1} \lor x_2 \lor x_3\right) \land \left(x_1 \lor \overline{x_2} \lor x_3\right) \land \left(\overline{x_1} \lor x_2 \lor x_4\right)$

k = 3

G

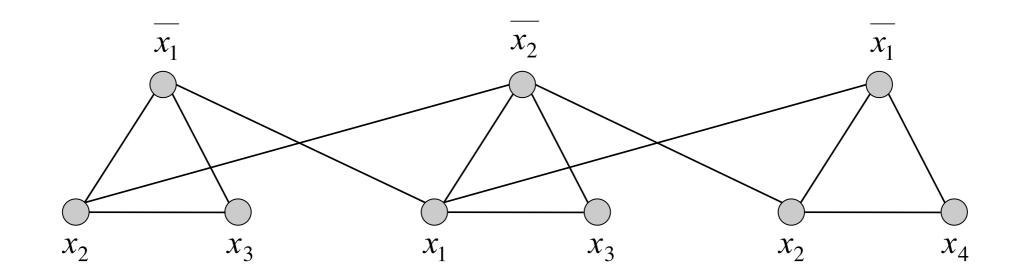
3-satisfiability reduces to vertex cover

Theorem. 3-SAT \leq_P VERTEX-COVER.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of VERTEX-COVER that has a vertex cover of size 2k iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.



k = 3

G

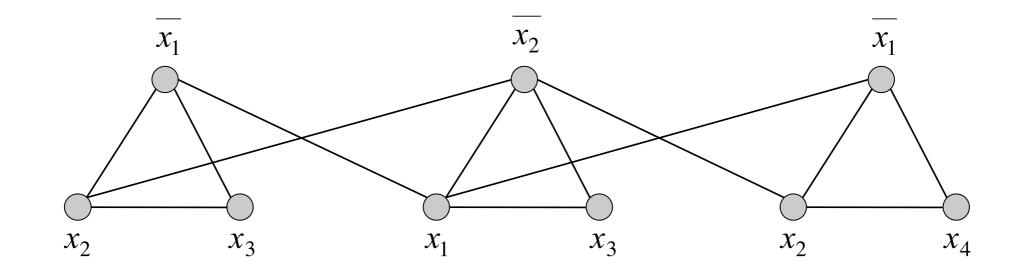
 $\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)$

Lemma. G contains vertex cover of size 2k iff Φ is satisfiable.

Pf. \Rightarrow Let *S* be a vertex cover of size 2*k*.

- *S* must contain exactly two nodes in each triangle.
- Set the excluded literal to *true* (and remaining variables consistently).
- Truth assignment is consistent and all clauses are satisfied.

Pf \leftarrow Given satisfying assignment, select one true literal from each triangle, and exclude that one. This is a vertex cover of size 2k.



k = 3

G

 $\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)$

Directed hamilton cycle reduces to hamilton cycle

DIR-HAM-CYCLE: Given a digraph G = (V, E), does there exist a simple directed cycle Γ that contains every node in *V*?

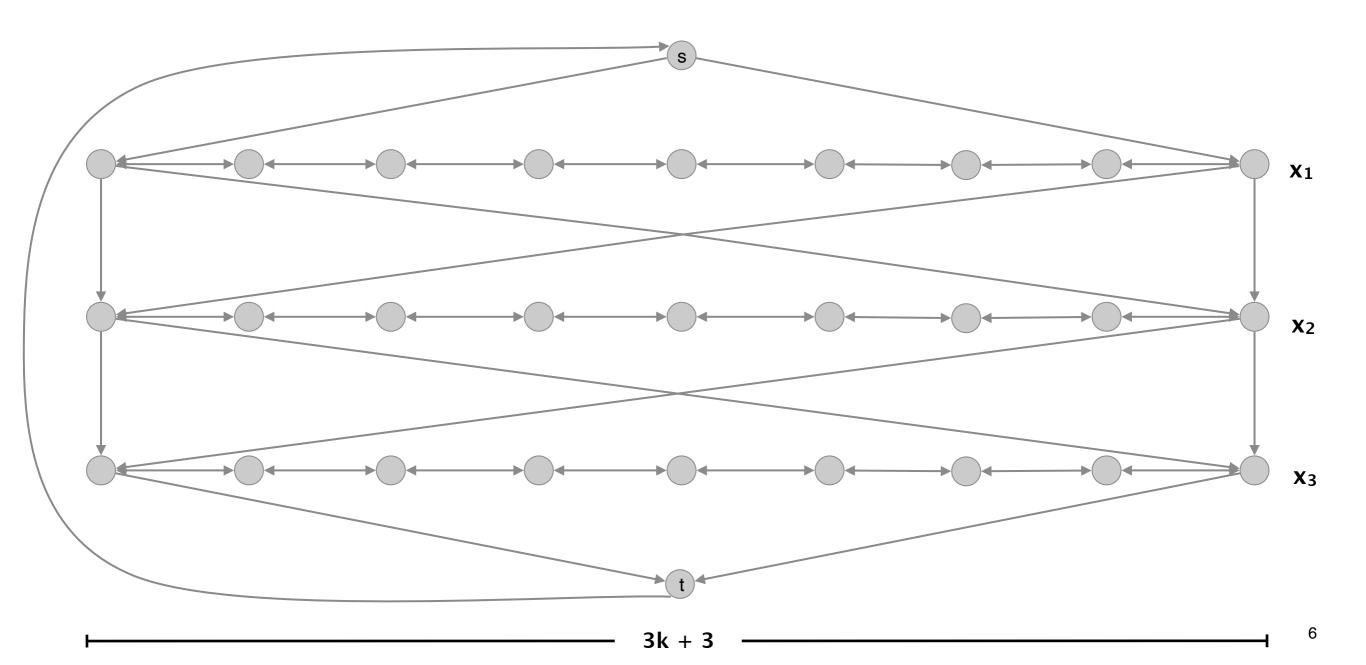
Theorem. 3-SAT \leq_P DIR-HAM-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamilton cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^n Hamilton cycles which correspond in a natural way to 2^n possible truth assignments.

3-satisfiability reduces to directed hamilton cycle

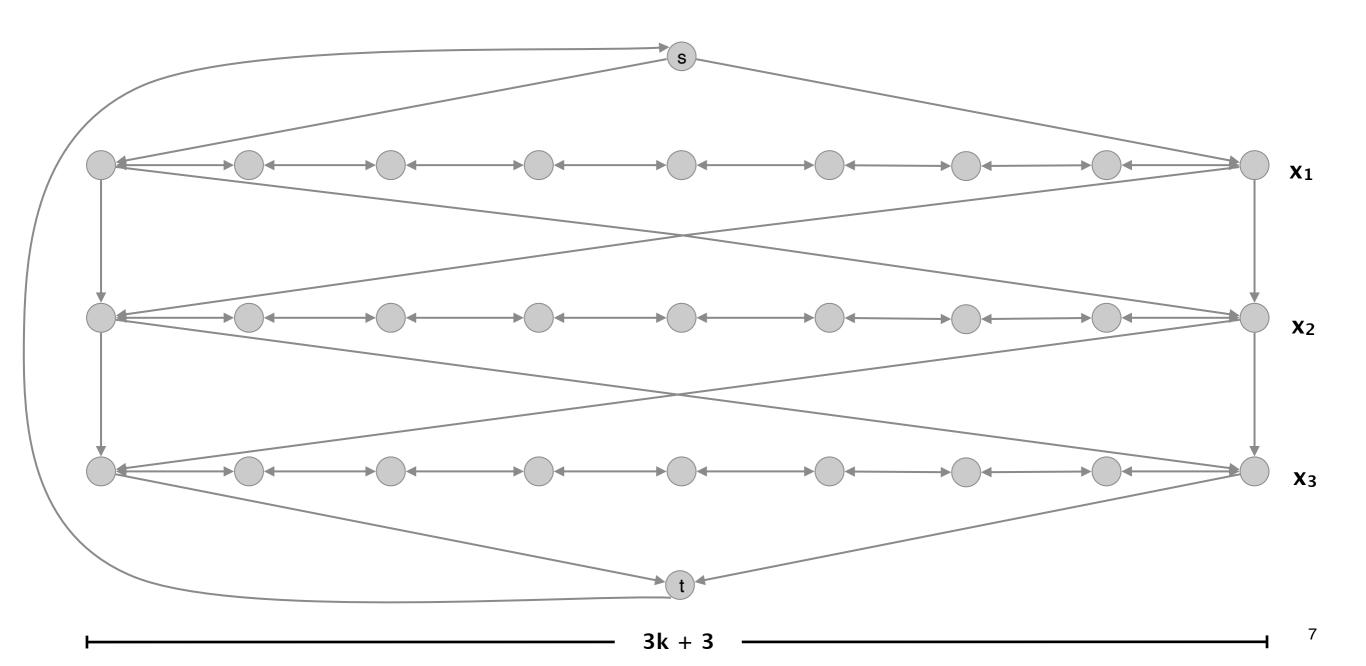
Construction. Given 3-SAT instance Φ with *n* variables x_i and *k* clauses



3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with *n* variables x_i and *k* clauses.

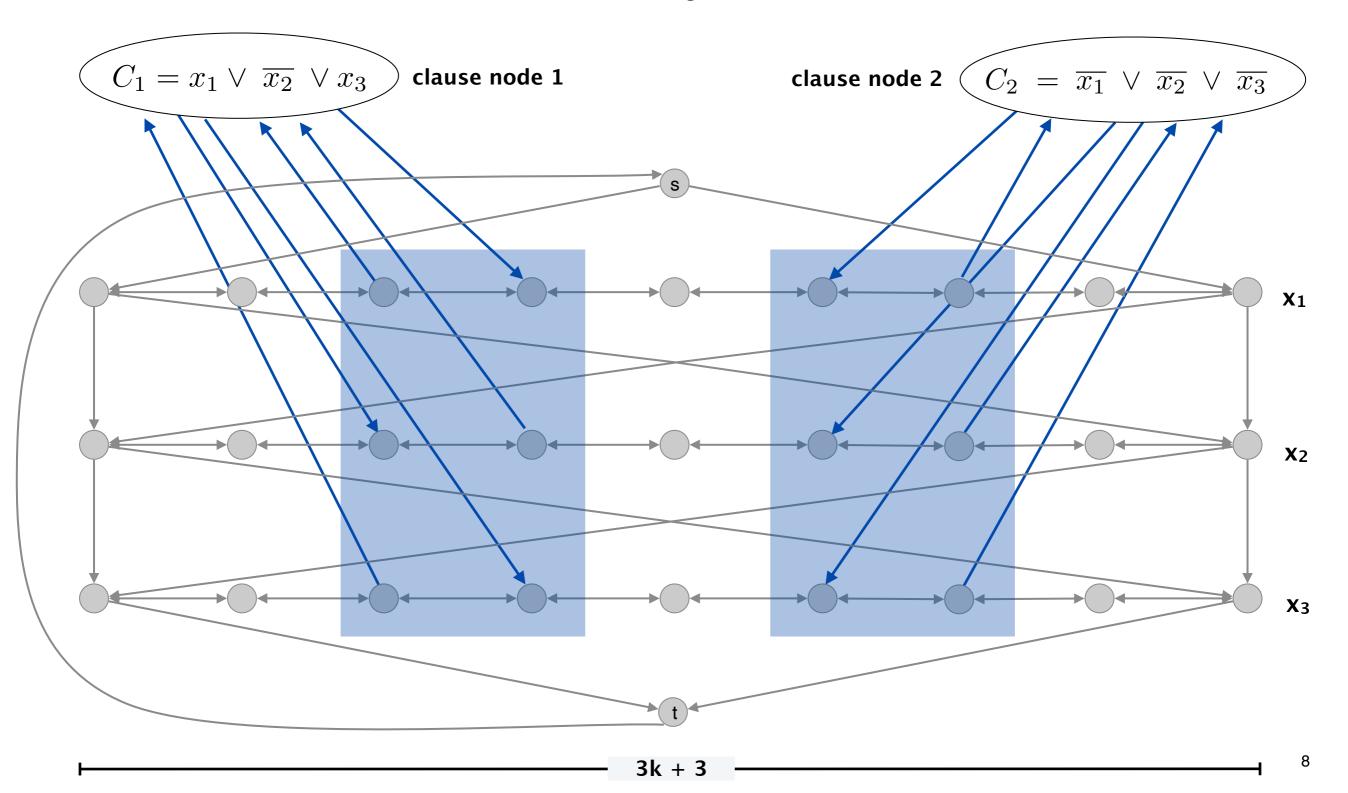
• Intuition: traverse path *i* from left to right \Leftrightarrow set variable $x_i = true$.



3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with *n* variables x_i and *k* clauses.

• For each clause, add a node and 6 edges.



Lemma. Φ is satisfiable iff *G* has a Hamilton cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance has satisfying assignment x^* .
- Then, define Hamilton cycle in G as follows:
 - if $x_i^* = true$, traverse row *i* from left to right
 - if $x_i^* = false$, traverse row *i* from right to left
 - for each clause C_j, there will be at least one row *i* in which we are going in "correct" direction to splice clause node C_j into cycle
 (and we splice in C_j exactly once)

Lemma. Φ is satisfiable iff *G* has a Hamilton cycle.

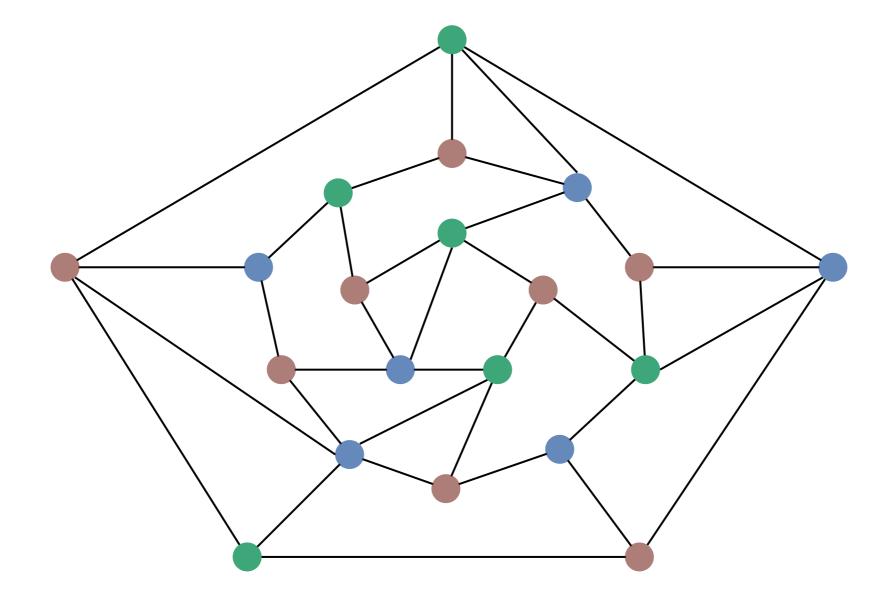
- Suppose G has a Hamilton cycle Γ .
- If Γ enters clause node C_i , it must depart on mate edge.
 - nodes immediately before and after C_i are connected by an edge $e \in E$
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G \{C_j\}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in

 $G \ - \{ \, C_1 \, , \, C_2 \, , \, \ldots , \, \, C_k \, \}.$

- Set $x_i^* = true$ iff Γ' traverses row *i* left to right.
- Since Γ visits each clause node C_j, at least one of the paths is traversed in "correct" direction, and each clause is satisfied.

3-colorability

3-COLOR. Given an undirected graph G, can the nodes be colored red, green, and blue so that no adjacent nodes have the same color?



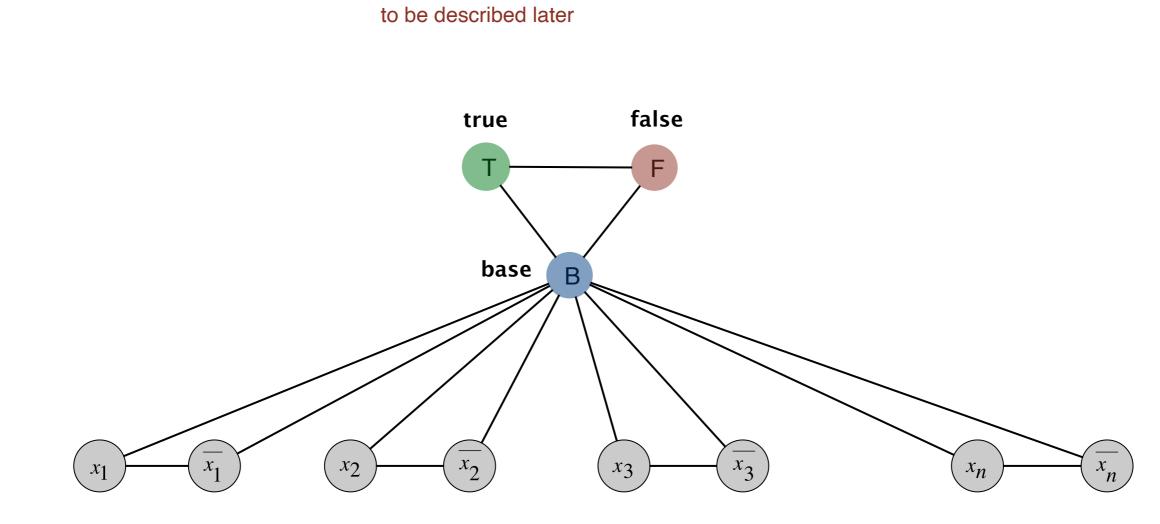
yes instance

Theorem. 3-SAT \leq_P 3-COLOR.

Pf. Given 3-SAT instance Φ , we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

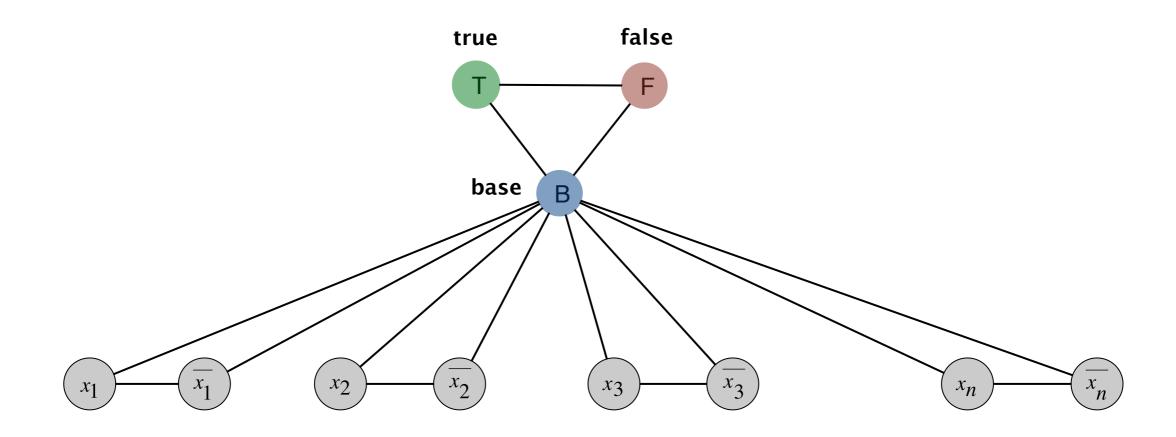
Construction.

- (i) Create a graph *G* with a node for each literal.
- (ii) Connect each literal to its negation.
- (iii) Create 3 new nodes *T*, *F*, and *B*; connect them in a triangle.
- (iv) Connect each literal to B.
- (v) For each clause C_j , add a gadget of 6 nodes and 13 edges.



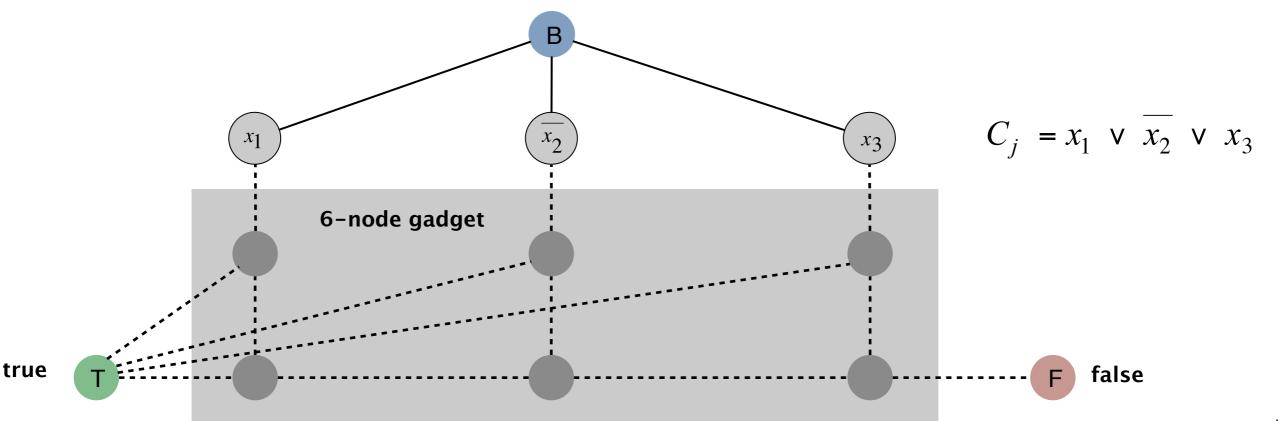
Pf. \Rightarrow Suppose graph *G* is 3-colorable.

- Consider assignment that sets all *T* literals to true.
- (iv) ensures each literal is *T* or *F*.
- (ii) ensures a literal and its negation are opposites.



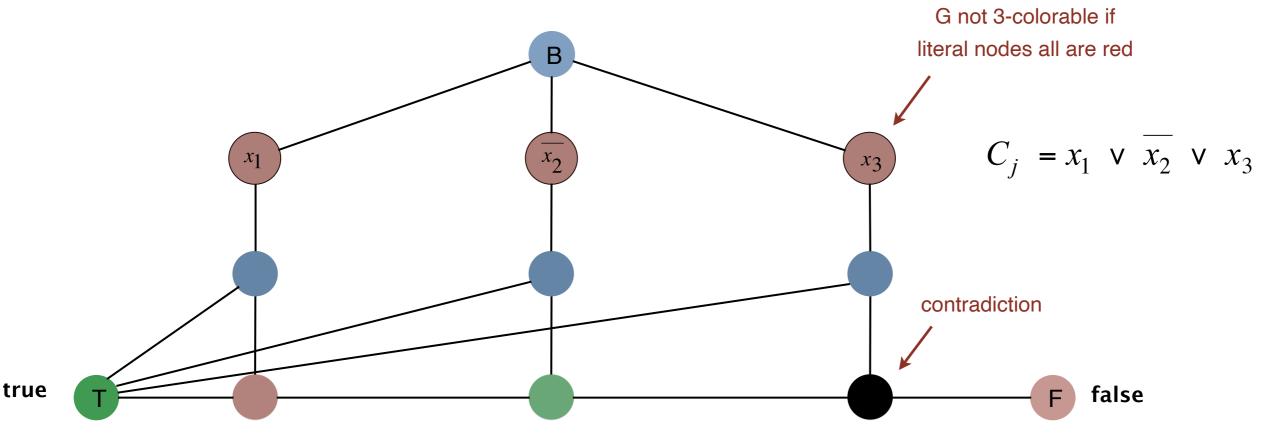
Pf. \Rightarrow Suppose graph *G* is 3-colorable.

- Consider assignment that sets all *T* literals to true.
- (iv) ensures each literal is *T* or *F*.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.



Pf. \Rightarrow Suppose graph *G* is 3-colorable.

- Consider assignment that sets all *T* literals to true.
- (iv) ensures each literal is *T* or *F*.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.



Pf. \leftarrow Suppose 3-SAT instance Φ is satisfiable.

- Color all true literals T.
- Color node below green node *F*, and node below that *B*.
- Color remaining middle row nodes *B*.
- Color remaining bottom nodes T or F as forced.

