
NP-completeness

• Many many problems are NP-complete

• If you solve one of them efficiently, you
solve all of them efficiently

• We don’t know how to solve any of them
efficiently

Approximation
Algorithms

• So it’s unlikely we’ll solve one of these soon
:(

• Instead of finding the best solution, we’ll
find a solution that is close :)

Traveling Salesman

Paris

London

Berlin

Lagos
Cairo

St. Petersburg

Karachi
Tokyo

Minsk

Houston

Seattle

Santiago

Given: n cities with distances
Goal: Compute shortest tour to visit them

Traveling Salesman
Given: n cities with distances
Goal: Compute shortest tour to visit them

Idea: use MST!
Prove: tour within factor 2 of best possible

Metric TSP: distances satisfy triangle
inequality:

distance(a,c) ≤ distance(a,b) + distance(b,c)

MST tour: Show that it is within factor 2!

3

4
4

2

7

2

7
7

7

7

7

9

9

9

6

6

6

6

5
5

5

5

5

4

5

5

5

5

5

1

1

1

1

1

4

1

1

1
3

3

3

3

33

3

3

3

3

3

3

3

3 3

3

3
33

3
3

3

3

3

3

3

3

3

3

4

MST tour: Take the Euler tour of tree.

3

4
4

2

7

2

7
7

7

7

7

9

9

9

6

6

6

6

5
5

5

5

5

4

5

5

5

5

5

1

1

1

1

1

4

1

1

1
3

3

3

3

33

3

3

3

3

3

3

3

3 3

3

3
33

3
3

3

3

3

3

3

3

3

3

4

Claim: Every tour costs at least as much as
MST.
Pf: Every tour contains a spanning tree

Claim: Euler tour costs at most 2 MST.
Pf: Can carry out Euler tour using each edge at
most 2 times.

Vertex Cover

Find smallest set of
vertices touching

every edge

Vertex Cover

Find smallest set of
vertices touching

every edge

Vertex Cover

Find smallest set of
vertices touching

every edge

Vertex Cover

Find smallest set of
vertices touching

every edge

Vertex Cover

Find smallest set of
vertices touching

every edge

Vertex Cover

Find smallest set of
vertices touching

every edge

Vertex Cover size 5

Greedy algorithms?

• Include vertex that covers most new
edges?

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8
Vertex Cover size 20

Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8
Optimal Vertex Cover

size 8

n vertices each
vertex has at

most one edge
into Bi

Bn

degree
n

Bi

n/i vertices of degree i
B1Bn-1

Greedy Rule: Pick vertex that covers the most edges
Could pick B1,...,Bn : nlog(n) vertices

Greedy Rule:
 Pick uncovered edge, add its end points

Find smallest set of
vertices touching

every edge

Greedy Rule:
 Pick uncovered edge, add its end points

Find smallest set of
vertices touching

every edge

Greedy Rule:
 Pick uncovered edge, add its end points

Vertex Cover size 6
Find smallest set of
vertices touching

every edge

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Greedy Rule:
 Pick uncovered edge, add its end points

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Greedy Rule:
 Pick uncovered edge, add its end points

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Greedy Rule:
 Pick uncovered edge, add its end points

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Greedy Rule:
 Pick uncovered edge, add its end points

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Greedy Rule:
 Pick uncovered edge, add its end points

1 2 3 4 5 6 7 8

Each vertex on top row has one
edge into each of the groups below.

1 2 3 4
5 6

7

8

Greedy Rule:
 Pick uncovered edge, add its end points

Vertex Cover size 16

Theorem: Size of greedy vertex cover
is at most twice as big as size of

optimal cover

Proof: Consider k edges picked.

Theorem: Size of greedy vertex cover
is at most twice as big as size of

optimal cover

Proof: Consider k edges picked.

Edges do not touch: every cover must pick
one vertex per edge! Thus every vertex cover

has k vertices.

Set Cover

Find smallest
collection of sets

containing every point

Set Cover

Find smallest
collection of sets

containing every point

Set Cover size 4

Find smallest
collection of sets

containing every point

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Find smallest
collection of sets

containing every point

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Find smallest
collection of sets

containing every point

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Find smallest
collection of sets

containing every point

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Find smallest
collection of sets

containing every point

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Theorem: Greedy finds best cover
upto a factor of ln(n).

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Greedy Set Cover: Pick the set that
maximizes # new elements covered

greedy
solution:
5 sets

Greedy Set Cover: Pick the set that
maximizes # new elements covered

optimal solution: 2 sets

greedy
solution:
5 sets

Greedy Set Cover: Pick the set that
maximizes # new elements covered

optimal solution: 2 sets

greedy
solution:

log(n) sets

Pf:

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Theorem: If the best solution has k sets, greedy
finds at most k ln(n) sets.

Suppose there is a set cover of size k.

Pf:

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Theorem: If the best solution has k sets, greedy
finds at most k ln(n) sets.

Suppose there is a set cover of size k.

There is set that covers 1/k fraction of remaining
elements, since there are k sets that cover all remaining
elements. So in each step, algorithm will cover 1/k
fraction of remaining elements.

Pf:

Greedy Set Cover: Pick the set that
maximizes # new elements covered

Theorem: If the best solution has k sets, greedy
finds at most k ln(n) sets.

Suppose there is a set cover of size k.

#elements uncovered after t steps ≤ n(1-1/k)t < ne-t/k.
So after t = k ln (n) steps, number of uncovered
elements < 1.

There is set that covers 1/k fraction of remaining
elements, since there are k sets that cover all remaining
elements. So in each step, algorithm will cover 1/k
fraction of remaining elements.

