
NP-completeness

• Many many problems are NP-complete

• If you solve one of them efficiently, you 
solve all of them efficiently

• We don’t know how to solve any of them 
efficiently



Approximation 
Algorithms

• So it’s unlikely we’ll solve one of these soon 
:(

• Instead of finding the best solution, we’ll 
find a solution that is close :)



Traveling Salesman

Paris
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Given: n cities with distances  
Goal: Compute shortest tour to visit them



Traveling Salesman
Given: n cities with distances  
Goal: Compute shortest tour to visit them

Idea: use MST!  
Prove: tour within factor 2 of best possible

Metric TSP: distances satisfy triangle 
inequality:  

distance(a,c) ≤ distance(a,b) + distance(b,c)



MST tour: Show that it is within factor 2!
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MST tour: Take the Euler tour of tree.

3

4
4

2

7

2

7
7

7

7

7

9

9

9

6

6

6

6

5
5

5

5

5

4

5

5

5

5

5

1

1

1

1

1

4

1

1

1
3

3

3

3

33

3

3

3

3

3

3

3

3 3

3

3
33

3
3

3

3

3

3

3

3

3

3

4



Claim: Every tour costs at least as much as 
MST. 
Pf: Every tour contains a spanning tree 

Claim: Euler tour costs at most 2 MST. 
Pf: Can carry out Euler tour using each edge at 
most 2 times. 



Vertex Cover

Find smallest set of 
vertices touching 

every edge 
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Vertex Cover

Find smallest set of 
vertices touching 

every edge 

Vertex Cover size 5



Greedy algorithms?

• Include vertex that covers most new 
edges?



Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one 
edge into each of the groups below.
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Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one 
edge into each of the groups below.

1 2 3 4
5 6

7

8
Vertex Cover size 20



Algorithm: Pick vertex that covers most new edges

1 2 3 4 5 6 7 8

Each vertex on top row has one 
edge into each of the groups below.

1 2 3 4
5 6

7

8
Optimal Vertex Cover 

size 8



n vertices each 
vertex has at 

most one edge 
into Bi

Bn

degree 
n

Bi

n/i vertices of degree i
B1Bn-1

Greedy Rule: Pick vertex that covers the most edges
Could pick B1,...,Bn :  nlog(n) vertices 



Greedy Rule:
    Pick uncovered edge, add its end points

Find smallest set of 
vertices touching 

every edge 
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Greedy Rule:
    Pick uncovered edge, add its end points

Vertex Cover size 6
Find smallest set of 
vertices touching 

every edge 
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1 2 3 4 5 6 7 8

Each vertex on top row has one 
edge into each of the groups below.

1 2 3 4
5 6

7

8

Greedy Rule: 
    Pick uncovered edge, add its end points

Vertex Cover size 16



Theorem:  Size of greedy vertex cover 
is at most twice as big as size of 

optimal cover

Proof: Consider k edges picked.



Theorem:  Size of greedy vertex cover 
is at most twice as big as size of 

optimal cover

Proof: Consider k edges picked.

Edges do not touch: every cover must pick 
one vertex per edge! Thus every vertex cover 

has k vertices.



Set Cover

Find smallest 
collection of sets 

containing every point 



Set Cover

Find smallest 
collection of sets 

containing every point 

Set Cover size 4
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Greedy Set Cover: Pick the set that 
maximizes # new elements covered
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Find smallest 
collection of sets 

containing every point 

Greedy Set Cover: Pick the set that 
maximizes # new elements covered



Theorem: Greedy finds best cover 
upto a factor of ln(n).

Greedy Set Cover: Pick the set that 
maximizes # new elements covered
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Greedy Set Cover: Pick the set that 
maximizes # new elements covered

greedy 
solution:  
5 sets



Greedy Set Cover: Pick the set that 
maximizes # new elements covered

optimal solution: 2 sets

greedy 
solution:  
5 sets



Greedy Set Cover: Pick the set that 
maximizes # new elements covered

optimal solution: 2 sets

greedy 
solution:  

log(n) sets



Pf:

Greedy Set Cover: Pick the set that 
maximizes # new elements covered

Theorem: If the best solution has k sets, greedy 
finds at most k ln(n) sets.

Suppose there is a set cover of size k. 
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Theorem: If the best solution has k sets, greedy 
finds at most k ln(n) sets.

Suppose there is a set cover of size k. 

There is set that covers 1/k fraction of remaining 
elements, since there are k sets that cover all remaining 
elements. So in each step, algorithm will cover 1/k 
fraction of remaining elements.



Pf:

Greedy Set Cover: Pick the set that 
maximizes # new elements covered

Theorem: If the best solution has k sets, greedy 
finds at most k ln(n) sets.

Suppose there is a set cover of size k. 

#elements uncovered after t steps ≤ n(1-1/k)t < ne-t/k. 
So after t = k ln (n) steps, number of uncovered 
elements < 1.

There is set that covers 1/k fraction of remaining 
elements, since there are k sets that cover all remaining 
elements. So in each step, algorithm will cover 1/k 
fraction of remaining elements.


