
More Dynamic
Programming

1

Common Subproblems

• Opt(i) - Opt solution using x1,..,xi. (eg LIS,
longest path).

• Opt(i,j) - Opt solution using xi,...,xj. (eg RNA)

• Opt(i,j) - Opt solution using x1,...,xi and
y1,...,yj. (eg Edit distance)

• Opt(r) - Opt solution using subtree rooted at r.
(eg Vertex cover on trees).

2

Longest increasing
subsequence

Given: sequence of numbers
Goal: find longest increasing subsequence

41 , 22 , 9 , 15 , 23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

3

Longest increasing
subsequence

Given: sequence of numbers
Goal: find longest increasing subsequence

41 , 22 , 9 , 15 , 23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

longest increasing subsequence: length 9

4

Longest increasing
subsequence

Given: sequence of numbers x1,..,xn

Goal: find longest increasing subsequence

Subproblems: l(j) - length of longest increasing
subseq. ending at j.

41 , 22 , 9 , 15 , 23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

5

Longest increasing
subsequence

Given: sequence of numbers x1,..,xn

Goal: find longest increasing subsequence

Subproblems: l(j) - length of longest increasing
subseq. ending at j.

41 , 22 , 9 , 15 , 23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

Observation: if longest inc. sub. ending at j is
xi1,xi2,...,xi,xj then l(j) = l(i)+1

6

Longest increasing
subsequence

Given: sequence of numbers x1,..,xn

Goal: find longest increasing subsequence

Subproblems: l(j) - length of longest increasing
subseq. ending at j.

41 , 22 , 9 , 15 , 23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

Observation: if longest inc. sub. ending at j is
xi1,xi2,...,xi,xj then l(j) = l(i)+1

Claim: l(j) = { 1
1+max l(i)

i: i<j, xi<xj

if xi≥xj, for all i<j
else

7

Longest increasing
subsequence

Subproblems: l(j) - length of longest increasing
subseq. ending at j.

Claim: l(j) = { 1
1+max l(i)

i: i<j, xi<xj

if xi≥xj, for all i<j
else

Algorithm:
for j=1,...,n

if xi≥xj, for all i<j, set l(j) = 1
else, set l(j) = 1+max l(i)

output max l(j)
j

i: i<j, xi<xj

Running time
O(n2)

8

All pairs shortest path in directed
graph with no negative cycles.

Given: directed graph, (possibly negative) edge
weights

Goal: find shortest path between every two vertices

Bellman-Ford algorithm can do this in time O(n2m)

9

All pairs shortest path in directed
graph with weighted edges

Given: directed graph, (possibly negative) edge
weights

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that
starts at i, ends at j and visits only {1,2,...,k} in the
middle.

10

Goal: find shortest path between every two vertices

i j

vertices {1,2,...,k}

Subproblems: d(i,j,k) - length of shortest path that
starts at i, ends at j and every other vertex on path is in
{1,2,...,k}.

11

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that
starts at i, ends at j and every other vertex on path is in
{1,2,...,k}.

i j

vertices {1,2,...,k}

12

Subproblems: d(i,j,k) - length of shortest path that
starts at i, ends at j and every other vertex on path is in
{1,2,...,k}.

Observation:
if shortest path for d(i,j,k) does not visit k, then
 d(i,j,k) = d(i,j,k-1).

Otherwise,
 d(i,j,k) = d(i,k,k-1) + d(k,j,k-1)

i j
vertices {1,2,...,k-1}

i jvertices {1,2,...,k-1} vertices {1,2,...,k-1}

k

13

Subproblems: d(i,j,k) - length of shortest path that
starts at i, ends at j and every other vertex on path is in
{1,2,...,k}.

Claim: d(i,j,k) = min{d(i,j,k-1), d(i,k,k-1)+d(k,j,k-1)}

for all i,j=1,...,n
set d(i,j,0) = weight of edge (i,j)

for k=1,...,n
for all i,j=1,...,n
set d(i,j,k) = min{d(i,j,k-1),d(i,k,k-1)+d(k,j,k-1)}

Algorithm:

Running time O(n3)

14

Traveling Salesperson Problem

Given: n cities, and the pairwise distances dij

Goal: find shortest tour that visits every city at least
once

15

Traveling Salesperson Problem

Given: n cities, and the pairwise distances dij

Goal: find shortest tour that visits every city at least
once

Brute force search algorithm: n! ~ 2nlogn time.

16

Traveling Salesperson Problem

Given: n cities, and the pairwise distances dij

Goal: find shortest tour that visits every city at least
once

Brute force search: n! ~ 2nlogn time.

Subproblems: T(v,S) - length of shortest tour that
visits all cities of the set S and ends at v.

17

Given: n cities, and the pairwise distances dij

Goal: find shortest tour that visits every city at least
once
Subproblems: T(v,S) - length of shortest tour that
visits all cities of the set S and ends at v.

Observation:
if shortest tour for T(v,S) visits city u right before
v, then
 T(v,S) = T(u,S-v) + duv

18

Given: n cities, and the pairwise distances dij

Goal: find shortest tour that visits every city at least
once
Subproblems: T(v,S) - length of shortest tour that
visits all cities of the set S and ends at v.

Algorithm:

for k=2,...,n

for v=1,...,n
set T(v,{v}) = 0

for all sets of cities S, |S|=k

set T(v,S) = min T(u,S-v)+duv

for all v in S

u in S-v

Running time
O(n2 2n)

19

Vertex Cover on Acyclic Graphs
Given: A tree
Goal: find smallest vertex cover (vertices that touch all
edges)

r

a b c
d

e f g
h

i kj
20

Vertex Cover on Acyclic Graphs
Given: A tree
Goal: find smallest vertex cover (vertices that touch all
edges)

Subproblems: V(q) - size of smallest vertex cover of
subtree rooted at q.

r

a b c
d

e f g
h

i kj
21

Vertex Cover on Acyclic Graphs
Subproblems: V(r) - size of vertex cover at subtree
rooted at r.

Case 1: Cover realizing V(r) does not contain r. Then it
must contain children(r).
V(r)= #children(r) + sum over grandchilren g V(g)

Case 2: Cover realizing V(r) does contain
r. V(r) = 1+sum over children c V(c)r

a b c
d

e f g
h

i kj
22

Vertex Cover on Acyclic Graphs
Subproblems: V(r) - size of vertex cover at subtree
rooted at r.

Case 1: Cover realizing V(r) does not contain r. Then it
must contain children(r).
V(r)= #children(r) + sum over grandchilren g V(g)

Case 2: Cover realizing V(r) does contain r.
V(r) = 1+sum over children c V(c)

Rough Algorithm:

V(r) = min{#children(r)+∑ V(g), 1+ ∑ V(c)}

For each vertex r, in decreasing order of depth, set

c, child of rg, grandchild of r

Running time
O(n)

23

Chain Matrix Multiplication

Given: n matrices M1,M2,...,Mn

Goal: compute product M1,M2,...,Mn (in what order
should we multiply?)

Basic operations: multiplying (a by b) matrix with
(b by c) matrix gives (a by c) matrix in abc time.

Example: To compute VWXYZ we could multiply
V((WX)(YZ)) or (V(W(XY)))Z or ...

24

Chain Matrix Multiplication

Given: n matrices M1,M2,...,Mn

Goal: compute product M1,M2,...,Mn (in what order
should we multiply?)

Basic operations: multiplying (a by b) matrix with
(b by c) matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute MiMi+1...Mj

Example: To compute VWXYZ we could multiply
V((WX)(YZ)) or (V(W(XY)))Z or ...

25

Given: n matrices M1,...,Mn, i’th matrix of size (mi by mi+1)

Goal: compute product M1,M2,...,Mn (in what order should
we multiply?)

Basic operations: multiplying (a by b) matrix with (b by c)
matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute MiMi+1...Mj

Observation: If the final multiplication in optimal solution is
between (Mi...Mk)(Mk+1...Mj), then
C(i,j) = C(i,k)+C(k,j)+ nink+1nj .

26

Basic operations: multiplying (a by b) matrix with (b by c)
matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute MiMi+1...Mj

Observation: If the final multiplication in optimal solution is
between (Mi...Mk)(Mk+1...Mj), then
C(i,j) = C(i,k)+C(k+1,j)+ mimk+1mj .

Algorithm:

for i=1,2,...,n-1, set C(i,i)=0

Running time
O(n3)

for s=1,2,...,n-1, i=1,...,n-1
 set C(i,i+s)=min C(i,k)+C(k+1,i+s)+mimk+1mi+s

i<k<s

27

Common Subproblems

• Opt(i) - Opt solution using x1,..,xi. (eg LIS,
longest path).

• Opt(i,j) - Opt solution using xi,...,xj. (eg RNA)

• Opt(i,j) - Opt solution using x1,...,xi and
y1,...,yj. (eg Edit distance)

• Opt(r) - Opt solution using subtree rooted at r.
(eg Vertex cover on trees).

28

