
More Dynamic 
Programming
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Common Subproblems

• Opt(i) - Opt solution using x1,..,xi. (eg LIS, 
longest path). 

• Opt(i,j) - Opt solution using xi,...,xj. (eg RNA) 

• Opt(i,j) - Opt solution using x1,...,xi and 
y1,...,yj. (eg Edit distance) 

• Opt(r) - Opt solution using subtree rooted at r. 
(eg Vertex cover on trees).
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Longest increasing 
subsequence

Given: sequence of numbers
Goal: find longest increasing subsequence

41 , 22 , 9 , 15 ,  23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90
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Longest increasing 
subsequence

Given: sequence of numbers
Goal: find longest increasing subsequence

41 , 22 , 9 , 15 ,  23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

longest increasing subsequence: length 9
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Longest increasing 
subsequence

Given: sequence of numbers x1,..,xn

Goal: find longest increasing subsequence

Subproblems: l(j) - length of longest increasing 
subseq. ending at j.

41 , 22 , 9 , 15 ,  23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90
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Longest increasing 
subsequence

Given: sequence of numbers x1,..,xn

Goal: find longest increasing subsequence

Subproblems: l(j) - length of longest increasing 
subseq. ending at j.

41 , 22 , 9 , 15 ,  23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

Observation: if longest inc. sub. ending at j is 
xi1,xi2,...,xi,xj then l(j) = l(i)+1
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Longest increasing 
subsequence

Given: sequence of numbers x1,..,xn

Goal: find longest increasing subsequence

Subproblems: l(j) - length of longest increasing 
subseq. ending at j.

41 , 22 , 9 , 15 ,  23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

Observation: if longest inc. sub. ending at j is 
xi1,xi2,...,xi,xj then l(j) = l(i)+1

Claim: l(j) = { 1
1+max l(i)

i: i<j, xi<xj

if xi≥xj, for all i<j
else
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Longest increasing 
subsequence

Subproblems: l(j) - length of longest increasing 
subseq. ending at j.

Claim: l(j) = { 1
1+max l(i)

i: i<j, xi<xj

if xi≥xj, for all i<j
else

Algorithm: 
for j=1,...,n

if xi≥xj, for all i<j, set l(j) = 1 
else, set l(j) = 1+max l(i) 

output max l(j)
j

i: i<j, xi<xj

Running time
O(n2) 
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All pairs shortest path in directed 
graph with no negative cycles.

Given: directed graph, (possibly negative) edge 
weights

Goal: find shortest path between every two vertices

Bellman-Ford algorithm can do this in time O(n2m)
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All pairs shortest path in directed 
graph with weighted edges

Given: directed graph, (possibly negative) edge 
weights

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that 
starts at i, ends at j and visits only {1,2,...,k} in the 
middle.
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Goal: find shortest path between every two vertices

i j

vertices {1,2,...,k}

Subproblems: d(i,j,k) - length of shortest path that 
starts at i, ends at j and every other vertex on path is in 
{1,2,...,k}.
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Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that 
starts at i, ends at j and every other vertex on path is in 
{1,2,...,k}.

i j

vertices {1,2,...,k}

12



Subproblems: d(i,j,k) - length of shortest path that 
starts at i, ends at j and every other vertex on path is in 
{1,2,...,k}.

Observation:  
if shortest path for d(i,j,k) does not visit k, then  
         d(i,j,k) = d(i,j,k-1). 

Otherwise,  
         d(i,j,k) = d(i,k,k-1) + d(k,j,k-1)

i j
vertices {1,2,...,k-1}

i jvertices {1,2,...,k-1} vertices {1,2,...,k-1}

k
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Subproblems: d(i,j,k) - length of shortest path that 
starts at i, ends at j and every other vertex on path is in 
{1,2,...,k}.

Claim: d(i,j,k) = min{d(i,j,k-1), d(i,k,k-1)+d(k,j,k-1)}

for all i,j=1,...,n
set d(i,j,0) = weight of edge (i,j)

for k=1,...,n
for all i,j=1,...,n
set d(i,j,k) = min{d(i,j,k-1),d(i,k,k-1)+d(k,j,k-1)}

Algorithm: 

Running time O(n3) 
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Traveling Salesperson Problem

Given: n cities, and the pairwise distances dij

Goal: find shortest tour that visits every city at least 
once
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Traveling Salesperson Problem

Given: n cities, and the pairwise distances dij

Goal: find shortest tour that visits every city at least 
once

Brute force search algorithm: n! ~ 2nlogn time.
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Traveling Salesperson Problem

Given: n cities, and the pairwise distances dij

Goal: find shortest tour that visits every city at least 
once

Brute force search: n! ~ 2nlogn time.

Subproblems: T(v,S) - length of shortest tour that 
visits all cities of the set S and ends at v.
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Given: n cities, and the pairwise distances dij

Goal: find shortest tour that visits every city at least 
once
Subproblems: T(v,S) - length of shortest tour that 
visits all cities of the set S and ends at v.

Observation:  
if shortest tour for T(v,S) visits city u right before 
v, then  
         T(v,S) = T(u,S-v) + duv
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Given: n cities, and the pairwise distances dij

Goal: find shortest tour that visits every city at least 
once
Subproblems: T(v,S) - length of shortest tour that 
visits all cities of the set S and ends at v.

Algorithm: 

for k=2,...,n

for v=1,...,n
set T(v,{v}) = 0

for all sets of cities S, |S|=k

set T(v,S) = min T(u,S-v)+duv

for all v in S

u in S-v

Running time
O(n2 2n) 
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Vertex Cover on Acyclic Graphs
Given: A tree
Goal: find smallest vertex cover (vertices that touch all 
edges)

r

a b c
d

e f g
h

i kj
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Vertex Cover on Acyclic Graphs
Given: A tree
Goal: find smallest vertex cover (vertices that touch all 
edges)

Subproblems: V(q) - size of smallest vertex cover of 
subtree rooted at q.

r

a b c
d

e f g
h

i kj
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Vertex Cover on Acyclic Graphs
Subproblems: V(r) - size of vertex cover at subtree 
rooted at r.

Case 1: Cover realizing V(r) does not contain r. Then it 
must contain children(r).  
V(r)= #children(r) + sum over grandchilren g V(g)

Case 2: Cover realizing V(r) does contain 
r. V(r) = 1+sum over children c V(c)r

a b c
d

e f g
h

i kj
22



Vertex Cover on Acyclic Graphs
Subproblems: V(r) - size of vertex cover at subtree 
rooted at r.

Case 1: Cover realizing V(r) does not contain r. Then it 
must contain children(r).  
V(r)= #children(r) + sum over grandchilren g V(g)

Case 2: Cover realizing V(r) does contain r.  
V(r) = 1+sum over children c V(c)

Rough Algorithm: 

V(r) = min{#children(r)+∑ V(g), 1+ ∑ V(c)}

For each vertex r, in decreasing order of depth, set 

c, child of rg, grandchild of r

Running time
O(n) 
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Chain Matrix Multiplication

Given: n matrices M1,M2,...,Mn

Goal: compute product M1,M2,...,Mn  (in what order 
should we multiply?)

Basic operations: multiplying (a by b) matrix with 
(b by c) matrix gives (a by c) matrix in abc time.

Example: To compute VWXYZ we could multiply 
V((WX)(YZ)) or (V(W(XY)))Z or ... 
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Chain Matrix Multiplication

Given: n matrices M1,M2,...,Mn

Goal: compute product M1,M2,...,Mn  (in what order 
should we multiply?)

Basic operations: multiplying (a by b) matrix with 
(b by c) matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute MiMi+1...Mj

Example: To compute VWXYZ we could multiply 
V((WX)(YZ)) or (V(W(XY)))Z or ... 
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Given: n matrices M1,...,Mn, i’th matrix of size (mi by mi+1)

Goal: compute product M1,M2,...,Mn  (in what order should 
we multiply?)

Basic operations: multiplying (a by b) matrix with (b by c) 
matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute MiMi+1...Mj

Observation: If the final multiplication in optimal solution is 
between (Mi...Mk)(Mk+1...Mj), then  
C(i,j) = C(i,k)+C(k,j)+ nink+1nj .
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Basic operations: multiplying (a by b) matrix with (b by c) 
matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute MiMi+1...Mj

Observation: If the final multiplication in optimal solution is 
between (Mi...Mk)(Mk+1...Mj), then  
C(i,j) = C(i,k)+C(k+1,j)+ mimk+1mj .

Algorithm: 

for i=1,2,...,n-1, set C(i,i)=0 

Running time
O(n3) 

for s=1,2,...,n-1, i=1,...,n-1 
         set C(i,i+s)=min C(i,k)+C(k+1,i+s)+mimk+1mi+s 

i<k<s
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Common Subproblems

• Opt(i) - Opt solution using x1,..,xi. (eg LIS, 
longest path). 

• Opt(i,j) - Opt solution using xi,...,xj. (eg RNA) 

• Opt(i,j) - Opt solution using x1,...,xi and 
y1,...,yj. (eg Edit distance) 

• Opt(r) - Opt solution using subtree rooted at r. 
(eg Vertex cover on trees).
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