More Dynamic Programming

Common Subproblems

- Opt(i) Opt solution using x₁,...,x_i. (eg LIS, longest path).
- Opt(i,j) Opt solution using x_i,...,x_j. (eg RNA)
- Opt(i,j) Opt solution using x₁,...,x_i and y₁,...,y_j. (eg Edit distance)
- Opt(r) Opt solution using subtree rooted at r. (eg Vertex cover on trees).

Given: sequence of numbers **Goal**: find longest increasing subsequence

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

Given: sequence of numbers **Goal**: find longest increasing subsequence

41, 22, **9**, **15**, **23**, 39, 21, 56, **24**, **34**, **59**, 23, **60**, 39, **87**, 23, **90**

longest increasing subsequence: length 9

Given: sequence of numbers x₁,...,x_n **Goal**: find longest increasing subsequence

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

Subproblems: I(j) - length of longest increasing subseq. ending at j.

Given: sequence of numbers x₁,..,x_n **Goal**: find longest increasing subsequence

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

Subproblems: l(j) - length of longest increasing subseq. ending at j.

Observation: if longest inc. sub. ending at j is $x_{i1}, x_{i2}, ..., x_i, x_j$ then l(j) = l(i)+1

Given: sequence of numbers x₁,..,x_n **Goal**: find longest increasing subsequence

 $41\ ,\ 22\ ,\ 9\ ,\ 15\ ,\ \ 23\ ,\ 39\ ,\ 21\ ,\ 56\ ,\ 24\ ,\ 34\ ,\ 59\ ,\ 23\ ,\ 60\ ,\ 39\ ,\ 87\ ,\ 23\ ,\ 90$

Subproblems: l(j) - length of longest increasing subseq. ending at j.

Observation: if longest inc. sub. ending at j is $x_{i1}, x_{i2}, ..., x_i, x_j$ then l(j) = l(i)+1

Claim:
$$l(j) = \begin{cases} 1 & \text{if } x_i \ge x_j, \text{ for all } i < j \\ 1 + \max_{i: i < j, x_i < x_j} l(i) & \text{else} \end{cases}$$

Subproblems: l(j) - length of longest increasing subseq. ending at j.

Claim:
$$l(j) = \begin{cases} 1 & \text{if } x_i \ge x_j, \text{ for all } i < j \\ 1 + \max_{i: i < j, x_i < x_j} l(i) & \text{else} \end{cases}$$

Algorithm:

for
$$j=1,...,n$$

if $x_i \ge x_j$, for all $i < j$, set $l(j) = 1$
else, set $l(j) = 1 + \max_{i: i < j, x_i < x_j} l(i)$
output max $l(j)$
j

All pairs shortest path in directed graph with no negative cycles.

- **Given**: directed graph, (possibly negative) edge weights
- **Goal**: find shortest path between every two vertices
- Bellman-Ford algorithm can do this in time O(n²m)

All pairs shortest path in directed graph with weighted edges

- **Given**: directed graph, (possibly negative) edge weights
- **Goal**: find shortest path between every two vertices
- **Subproblems:** d(i,j,k) length of shortest path that starts at i, ends at j and visits only {1,2,...,k} in the middle.

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that starts at i, ends at j and every other vertex on path is in {1,2,...,k}.

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that starts at i, ends at j and every other vertex on path is in {1,2,...,k}.

Subproblems: d(i,j,k) - length of shortest path that starts at i, ends at j and every other vertex on path is in {1,2,...,k}.

Observation:

if shortest path for d(i,j,k) does not visit k, then d(i,j,k) = d(i,j,k-1).

Subproblems: d(i,j,k) - length of shortest path that starts at i, ends at j and every other vertex on path is in $\{1,2,...,k\}$.

Claim: d(i,j,k) = min{d(i,j,k-1), d(i,k,k-1)+d(k,j,k-1)}

Algorithm:

```
for all i,j=1,...,n
    set d(i,j,0) = weight of edge (i,j)
for k=1,...,n
    for all i,j=1,...,n
    set d(i,j,k) = min{d(i,j,k-1),d(i,k,k-1)+d(k,j,k-1)}
```

Running time O(n³)

Traveling Salesperson Problem

- **Given**: n cities, and the pairwise distances d_{ij}
- **Goal**: find shortest tour that visits every city at least once

Traveling Salesperson Problem

- **Given**: n cities, and the pairwise distances d_{ij}
- **Goal**: find shortest tour that visits every city at least once
- **Brute force search algorithm:** n! ~ 2^{nlogn} time.

Traveling Salesperson Problem

Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Brute force search: $n! \sim 2^{n\log n}$ time.

Subproblems: T(v,S) - length of shortest tour that visits all cities of the set S and ends at v.

Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Subproblems: T(v,S) - length of shortest tour that visits all cities of the set S and ends at v.

Observation:

if shortest tour for T(v,S) visits city u right before v, then

 $T(v,S) = T(u,S-v) + d_{uv}$

Given: n cities, and the pairwise distances d_{ij} **Goal**: find shortest tour that visits every city at least

once

Subproblems: T(v,S) - length of shortest tour that visits all cities of the set S and ends at v.

Algorithm:

for v=1,...,n set T(v,{v}) = 0 for k=2,...,n for all sets of cities S, |S|=kfor all v in S set T(v,S) = min T(u,S-v)+d_{uv} <u>Running time</u> O(n² 2ⁿ)

Given: A tree

Goal: find smallest vertex cover (vertices that touch all edges)

Given: A tree

Goal: find smallest vertex cover (vertices that touch all edges)

Subproblems: V(q) - size of smallest vertex cover of subtree rooted at q.

Subproblems: V(r) - size of vertex cover at subtree rooted at r.

Case 1: Cover realizing V(r) does not contain r. Then it must contain children(r).

V(r) = #children(r) + sum over grandchilren g V(g)

Case 2: Cover realizing V(r) does contain r. V(r) = 1+sum over children c V(c)

Subproblems: V(r) - size of vertex cover at subtree rooted at r.

Case 1: Cover realizing V(r) does not contain r. Then it must contain children(r). V(r)= #children(r) + sum over grandchilren g V(g)

Case 2: Cover realizing V(r) does contain r. V(r) = 1+sum over children c V(c)

Rough Algorithm:

<u>Running time</u> O(n)

For each vertex r, in decreasing order of depth, set $V(r) = min\{\#children(r)+\Sigma V(g), 1+\Sigma V(c)\}$

g, grandchild of r

c, child of r

Chain Matrix Multiplication

- **Given**: n matrices M₁,M₂,...,M_n
- **Goal**: compute product M₁,M₂,...,M_n (in what order should we multiply?)
- **Example**: To compute VWXYZ we could multiply V((WX)(YZ)) or (V(W(XY)))Z or ...
- **Basic operations**: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Chain Matrix Multiplication

- **Given**: n matrices M₁,M₂,...,M_n
- **Goal**: compute product M₁,M₂,...,M_n (in what order should we multiply?)
- **Example**: To compute VWXYZ we could multiply V((WX)(YZ)) or (V(W(XY)))Z or ...
- **Basic operations**: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.
- **Subproblems:** C(i,j) time to compute M_iM_{i+1}...M_j

Given: n matrices M₁,...,M_n, i'th matrix of size (m_i by m_{i+1})

Goal: compute product M₁,M₂,...,M_n (in what order should we multiply?)

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute M_iM_{i+1}...M_j

Observation: If the final multiplication in optimal solution is between $(M_i...M_k)(M_{k+1}...M_j)$, then $C(i,j) = C(i,k)+C(k,j)+n_in_{k+1}n_j$.

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute M_iM_{i+1}...M_j

Observation: If the final multiplication in optimal solution is between $(M_i...M_k)(M_{k+1}...M_j)$, then $C(i,j) = C(i,k)+C(k+1,j)+m_im_{k+1}m_j$.

Algorithm: Running time $O(n^3)$ for i=1,2,...,n-1, set C(i,i)=0 for s=1,2,...,n-1, i=1,...,n-1 set C(i,i+s)=min C(i,k)+C(k+1,i+s)+mim_{k+1}m_{i+s})

Common Subproblems

- Opt(i) Opt solution using x₁,...,x_i. (eg LIS, longest path).
- Opt(i,j) Opt solution using x_i,...,x_j. (eg RNA)
- Opt(i,j) Opt solution using x₁,...,x_i and y₁,...,y_j. (eg Edit distance)
- Opt(r) Opt solution using subtree rooted at r. (eg Vertex cover on trees).