CSEP521: Algorithms November 23, 2022

Homework 3
Anup Rao Due: December 4, 2022

Read the fine prin‘ﬂ An algorithm is said to run in polynomial time if it runs in time O(n<)
for some constant d on inputs of size n. Each problem is worth 10 points:

1. Given a sequence of characters ci,...,c,, we say that a subsequence is a palindrome if it
reads the same forwards and backwards. For example, “a,b,a,c,a,b,a” is a palindrome. Give
an O(n?) time algorithm to find the longest palindrome subsequence in the input sequence
c1,...,cy. For example, in the sequence c,l,m,a,l, f,d,c,a, f,m, the longest palindrome
subsequence is m,a,d,a,m. HINT: For i < j, let p(i,j) denote the length of the longest
palindrome in z;,...,z;. Express p(i,j) in terms of p(i + 1,7),p(i,5 — 1),p(i + 1,5 — 1).
Evaluate the values p(i, j) in order of increasing |i — j|.

Solution. As in the hint, we shall express p(i, j) in terms of the optimal solution for smaller
intervals.

There are a number of cases. If ¢ = j, then the solution has value 1, since ¢; is a palindrome
by itself. If i = j — 1 then the optimal solution is 1 if ¢; # ¢j and 2 if ¢; = ¢;. If i < j -1
and ¢; = ¢j, then the optimal solution must match ¢; to ¢;, so the optimal solution has value
p(i,7) =pli+1,7—1)+2. If i < j—1 and ¢; # ¢;, then the optimal solution does not involve
either ¢; or ¢; so it is equal to either p(i + 1, 5) or p(i,j — 1).

We can compute the p(i, j) values in increasing value of |j —i|. Putting all this together gives
the algorithm, which computes the longest palindrome as P(i,j) for each interval [i, j], and

In solving the problem sets, you are allowed to collaborate with fellow students taking the class, but each
submission can have at most one author. If you do collaborate in any way, you must acknowledge, for each
problem, the people you worked with on that problem. The problems have been carefully chosen for their pedagogical
value, and hence might be similar to those given in past offerings of this course at UW, or similar to other courses
at other schools. Using any pre-existing solutions from these sources, for from the web, constitutes a violation of the
academic integrity you are expected to exemplify, and is strictly prohibited. Most of the problems only require one
or two key ideas for their solution. It will help you a lot to spell out these main ideas so that you can get most of the
credit for a problem even if you err on the finer details. Please justify all answers. Some other guidelines for writing
good solutions are here: http://www.cs.washington.edu/education/courses/cse421/08wi/guidelines.pdf.

3-1

http://www.cs.washington.edu/education/courses/cse421/08wi/guidelines.pdf

the length of the palindrome as p(i, j).

Input: A list ¢[1,...,n] of characters.
Result: The longest palindrome subsequence of c.
for j =1 ton do
end
for j =2 ton do
if Cj = Cj-1 then

‘ Set p(] - 17.]) = 27 P(]:]) = Cj—1C4;
end
else

| Set p(j — 1,j) =1, P(j,j) = ¢j-1;
end
end
for k=2 ton do
fori=1ton—kdo

if C; = Ci+k then
Set p(i,i+ k) =2+p(i+1,i+k—1);
Set P(i,i+k)=c;P(i+1,i+k—1)ciik;
end
else
if p(i +1,i+ k) > p(i,i + k — 1) then
Set p(i,i +k)=p(i+1,i+k);
Set P(i,i+ k)= P(i+ 1,i+ k);
end
else
Set p(i,i+ k) =p(i,i+k —1);
Set P(i,i+ k)= P(i,i + k—1);
end
end
end

end
return P(1,n);

Runtime: The algorithm’s runtime is proportional to the number of subproblems P(i,j),
which is O(n?).

. You are given a rectangular piece of cloth with dimensions X x Y, where X and Y are positive
integers, and a list of n products that can be made using the cloth. For each product ¢ you
know that a rectangle of cloth of dimensions a; x b; is needed and that the selling price of the
product is ¢; Assume the a;, b; and ¢; are all positive integers. You have a machine that can
cut any rectangular piece of cloth into two pieces either horizontally or vertically. Design an
algorithm that runs in time that is polynomial in X,Y,n and determines the best return on
the X x Y piece of cloth, that is, a strategy for cutting the cloth so that the products made

from the resulting pieces give the maximum sum of selling prices. You are free to make as
many copies of a given product as you wish, or none, if desired.

Solution. The crux of this problem is to identify precisely which actions are available to
the machine:

e Make a vertical cut
e Make a horizontal cut

e Do nothing (and sell the current item)

Input: Dimensions of cloth XY, and a list of item values and dimensions.
Result: Best possible value of the cloth
Let cut be an X by Y dimensional array with every entry initialized to 0.
for x €[0,X — 1] do
for y € [0,Y — 1] do
for .y € [1,2 — 1] do
| cut[z,y] = max(cut[z,y], cut[Teut, Y] + cut|x — Teur, y])
end
for you € [1,y — 1] do
| cut[z,y] = max(cut[z,y], cut[z, Yeur] + cut[z,y — Yeut))

end
for item € Items do
if itemgimensions == (x,y) then
| cut[z,y] = max(cut[z,y], itemyaiue)
end
end
end

end

return cut[X — 1,Y — 1]

// Note: This does not actually retrieve the necessary cuts. The cuts could be retrieved by
storing which actions are taken along the way, and storing those actions along side their
corresponding values in cut.

Run time: The outer two loops lead to O(XY) iterations over the inner most piece, which
does tries every possible vertical cut, horizontal cut, and item. The overall runtime is
OXY) OX+Y +n)=0XY(X+Y +n)).

Proof of correctness: We have to prove that OPT (z,y) = cut(x,y). Here, OPT refers to
the optimum solution to the problem and cut refers to the solution returned by the above
algorithm. It is sufficient to prove
OPT(x,y) > cut(z,) (1)
OPT(z,y) < cut(z,y) (2)

To prove equation (1), we use the fact that the solution returned by cut(z,y) is a feasible
solution and hence OPT(x,y) can only do better, impying OPT(z,y) > cut(x,y).

3-3

We prove equation 2 by induction on the size of xy.

Base Case: (z,y) = (1,1). It is clear here that OPT'(1,1) could be 0 or the maximum price
given by a product of dimension 1 x 1. In both cases, OPT'(1,1) = cut(1,1).

Induction Hypothesis: OPT (z',y) < cut(2,y’) Vo' < x,y <.

To prove: OPT(z + 1,y) < cut(x 4+ 1,y). Let us consider the optimum solution. It is true
that there exist an ¢ such that the piece given by dimensions (x + 1) X y is cut horizontally
or vertically. This says that OPT(x + 1,y) = OPT(i,y) + OPT(xz + 1 — i,y)(when cut
horizontally) or OPT(x + 1,y) = OPT(xz + 1,i) + OPT(x + 1,y — i)(when cut vertically).
By induction hypothesis OPT(2',y') < cut(x’,y’) for all ' < z and ¢y’ < y. This implies
OPT(z+1,y) < cut(zx+1,y). A similar argument would give OPT(x,y+1) < cut(x,y+1).
This completes the proof.

. Give an algorithm to find a vertex cover of smallest size in a bipartite graph. Hints:

(a) Construct a flow network from the input bipartite graph just as in the maximum match-
ing algorithm.

(b) Show that every min-cut in this flow network gives a vertex cover whose size is the same
as the capacity of the cut.

(c) Show that every minimum sized vertex cover in the bipartite graph gives a cut whose
capacity is the same as the size of the vertex cover.

(d) Conclude by giving an algorithm to find the smallest vertex cover.

Solution: The flow network will have vertices s,t as well as all the vertices of the bipartite
graph. For every edge u on the left, the network has an edge (s, u) with capacity 1. For every
edge v on the right, the network has the edge (v,t) of capacity 1 for every edge (u,v) from
left to right, the network has the edge (u,v) with capacity oo.

Now, as in the hint, we prove that every min-cut X,Y corresponds to a vertex cover (A —
X)U (B —Y) of smallest possible size. To see this, first we prove that given any vertex cover
V of the original graph, we obtain an s,t cut in the flow network whose capacity is |V|. The
s,t cut is given by the partition

(s}UA-V)U(BNV), {tIU(ANV)U(B - V).

This is clearly a valid partition of the vertices of the flow network. The fact that V is a vertex
cover implies that no edge of infinite capacity is cut. Such an edge would have to go from
A —V to B—V, and there are no such edges because V is a vertex cover. So, the capacity
of this cut is finite. Moreover the number of edges from s that are cut is exactly |A N V|,
and the number of edges into ¢ that are cut is exactly |[B N V|. So, the capacity of the cut is
|JANV|+ |BnNV|=|V|. This proves that every vertex cover gives a cut whose capacity is
the size of the vertex cover.

Finally, we show that every min-cut gives a vertex cover whose size is the capacity of the cut.
Given any cut (X,Y") consider the set of vertices (A — X)U (B —Y). We claim that this is a
vertex cover. Indeed, since this is a min-cut, it cannot cut any edge of infinite capacity. This
means that for every edge (u,v) from A to B, either u ¢ X or v ¢ Y. Thus, (u,v) is covered
by (A—X)U (B —Y). The size of this vertex cover is |A — X| + |B — Y|, which exactly the

3-4

same as the capacity of the cut (X,Y). So, the capacity of the min-cut is the same as the
size of the smallest vertex cover.

The final algorithm is to run the capacity scaling algorithm on this flow network.

. You are running a truck business and need to fill a truck that can carry a total weight of 100
tons and volume 30 cubic meters. You can put three types of materials into the truck.

(a) Item 1 has density 2 tons per cubic meter, maximum available amount is 40 cubic meters
and the revenue associated with it is 1000 dollars per cubic meter.

(b) Item 2 has density 5 tons per cubic meter, maximum available amount is 20 cubic meters
and the revenue associated with it is 2000 dollars per cubic meter.

(c) Ttem 3 has density 7 tons per cubic meter, maximum available amount is 15 cubic meters
and the revenue associated with it is 1500 dollars per cubic meter.
Write a linear program to calculate how much of each amount the truck should carry to
maximize profits (no need to solve it).

Solution: In the following linear program, a, b, ¢ denote the volume of each of the materials
that can be carried.

maximize 1000a + 20006 + 1500¢

subject to
2a 4+ 5b+ 7c <100
a <40
b <20
c <15
a+b+c<30
a,b,c>0

3-5

