
CSEP521: Algorithms December 2, 2022

Homework 4

Anup Rao Due: December 11, 2022

Read the fine print1. An algorithm is said to run in polynomial time if it runs in time O(nd) for
some constant d on inputs of size n. Each problem is worth 10 points:

1. Show that if P=NP, then there is a polynomial time algorithm for factoring. Here you are
given an n-bit number N , and you need to find a factor a that divides N , with a 6= 1, and
a 6= N , if such an a exists.

Solution. Let IsFactor(N, x, y) be a procedure with polynomial runtime that returns True
if there is an a that divides N and x ≤ a ≤ y. (It is easy to verify that the language
corresponding to IsFactor(N, x, y) is in NP .) The following algorithm outputs the smallest a
that divides N such that 1 < a < N , if such an a exists.

Input: N
Result: a that divides N , satisfying 1 < a < N
if IsFactor(N, 2, N − 1) == False then

return No such divisor exists
end
` = 2, r = N − 1
while ` ≤ r do

if ` == r and ` divides N then
return `

end
m = b(`+ r)/2c
if IsFactor(N, `,m) == True then

r == m
end
else

` = m
end

end

1In solving the problem sets, you are allowed to collaborate with fellow students taking the class, but each
submission can have at most one author. If you do collaborate in any way, you must acknowledge, for each
problem, the people you worked with on that problem. The problems have been carefully chosen for their pedagogical
value, and hence might be similar to those given in past offerings of this course at UW, or similar to other courses
at other schools. Using any pre-existing solutions from these sources, for from the web, constitutes a violation of the
academic integrity you are expected to exemplify, and is strictly prohibited. Most of the problems only require one
or two key ideas for their solution. It will help you a lot to spell out these main ideas so that you can get most of the
credit for a problem even if you err on the finer details. Please justify all answers. Some other guidelines for writing
good solutions are here: http://www.cs.washington.edu/education/courses/cse421/08wi/guidelines.pdf.

4-1

http://www.cs.washington.edu/education/courses/cse421/08wi/guidelines.pdf

Note that the while loop iterates at most logN ≤ n times. Since each iteration has a
polynomial runtime, the overall runtime of the algorithm is also polynomial. For the proof
of correctness, observe that if IsFactor(N, 2, N − 1) is True, then every iteration of the while
loop considers a range from x to y such that IsFactor(N, x, y) is True. The distance between
x and y decrease in each iteration, eventually finding the number that divides N .

2. Compute the dual of the following program:

maximize x1 − 3x2 + 4x3
subject to 5x1 + 3x2 ≤ 0

4x1 − x2 ≤ 3
−x2 + 3x3 ≤ 2
x1 ≥ 0
x2 ≥ 0 .

Solution:

The dual problem of a primal problem of the form

maximize cTx, subject to Ax ≤ b, x ≥ 0

is given by
minimize bT y, subject to AT y ≥ c, y ≥ 0

We first substitute x3 = x+3 − x
−
3 , to get the standard form for the primal problem

maximize x1 − 3x2 + 4x+3 − 4x−3
subject to 5x1 + 3x2 ≤ 0

4x1 − x2 ≤ 3

− x2 + 3x+3 − 3x−3 ≤ 2

x1, x2, x
+
3 , x

−
3 ≥ 0

where

A =

5 3 0 0
4 −1 0 0
0 −1 3 −3

 , b =

0
3
2

 , c =

1
−3
4
−4

 .

Therefore, the dual problem is

minimize 3y2 + 2y3

subject to 5y1 + 4y2 ≥ 1

3y1 − y2 − y3 ≥ −3

3y3 ≥ 4

− 3y3 ≥ −4

y1, y2, y3 ≥ 0,

Note: You can further simplify the above equations and unequations by putting y3 = 4
3

and making subsequent modifications. However, it is not needed to get full credit for this
problem.

4-2

3. You are given the following 4 points in the plane:

(a1, b1) = (1, 3), (a2, b2) = (2, 7), (a3, b3) = (3, 5), (a4, b4) = (4,−1).

You want to find a line that approximately passes through these points. A line

`α,β = {(x, y) : y = αx+ β}

is specified by the numbers α, β. The goal is to find the line that minimizes its error from the
point farthest from it. Write a linear program to find the parameters α, β to minimize the
error

max
i=1,2,3,4

|bi − α · ai − β|.

The program need not be in standard form.

Solution:

minimize c

subject to

for all i = 1, . . . , 4,

c ≥ bi − αai − β
c ≥ −bi − αai − β

4. Consider a special version of the 3SAT problem, where every clause has exactly 3 literals,
and each variable appears at most 3 times. Show that this version of 3SAT can be solved in
polynomial time, by giving a polynomial time algorithm that finds a satisfying assignment.
HINT: Consider the bipartite graph with clauses on the left, and variables on the right.
Connect a clause to a variable if the variable appears in the clause. Argue that this graph has
a perfect matching. Then give an algorithm to find the perfect matching and find a satisfying
assignment.

Solution Let x1, . . . , xn and c1, . . . , cm be the the variables and clauses, respectively. As
in the hint, construct a bipartite graph with the clauses on the left and the variables on the
right, in which there is an edge between ci and xj if xj or its negation appears in ci. We
claim that this graph has a matching in which all clauses are matched.

Claim 1. There is an injective map f : {1, 2, . . . ,m} → {1, 2, . . . , n} such that the edges
(c1, xf(1)), (c2, xf(2)), . . . , (cm, xf(m)) form a matching.

Proof We will prove this claim using Hall’s theorem. We want to show that for every
subset of clauses C, its neighborhood N(C) ⊆ {x1, . . . , xn} satisfies |N(C)| ≥ |C|. For the
sake of contradiction, assume that there is a C such that |N(C)| < |C|. As |N(C)| ≤ 3|C|, it
must be the case that there is a variable in N(C) with an edge to more than 3 clauses, which
is a contradiction to the assumption that each variable appears three times.

4-3

Let f be the injective map given by Claim 1. Now, for each i ∈ {1, 2, . . . , n}, if f−1(i) exists,
then set xi such that the clause cf−1(i) is satisfied; otherwise, set xi = 0. By Claim 1, we know
that (c1, xf(1)), (c2, xf(2)), . . . , (cm, xf(m)) form a matching. Hence, all clauses are satisfied by
this assignment.

4-4

