
CSEP521: Algorithms October 14, 2022

Homework 1

Anup Rao Due: October 23, 2022

Each problem is worth 10 points:

1. Arrange the following in increasing order of asymptotic growth rate:

(a) f1(n) = 100n2

(b) f2(n) = n3

(c) f3(n) = 2
√
n

(d) f4(n) = n(log n)1000

(e) f5(n) = 2n logn

(f) f6(n) = 2(logn)
0.9

Solution: In increasing asymptotic order, the functions are:

2(logn)
0.9
, n(log n)1000, 100n2, n3, 2

√
n, 2n logn.

This can be shown by comparing the logarithm of the functions, which can be arranged in
increasing order as follows:

log0.9 n, log n + 1000 log log n, 2 log n + log 100, 3 log n,
√
n, n log n.

2. A walk of length k in a graph is a sequence of vertices v0, v1, . . . , vk such that vi is a neighbor
of vi+1 for i = 0, 1, 2, . . . , k− 1. Suppose the product of two n× n matrices can be computed
in time O(nω) for a constant ω ≥ 2. Give an algorithm that counts the number of walks of
length k in a graph with n vertices in time O(nω log k). HINT: If A is the adjacency matrix,
prove that the (i, j)′th entry of Ak is exactly the number of walks of length k that start at i
and end at j. Repeatedly square the adjacency matrix to compute Ak.

Solution. The algorithm is given below.

(a) Proof of correctness: The key claim is that the i, j-th entry of Ak counts the number
of k-length walks from i to j, for all i, j. Thus summing over the matrix gives us the
total number of k-length walks.

The proof of the claim is via induction. The base case, k = 1, follows from the fact that
a one length walk between any two vertices corresponds to a (directed) edge. Since the
ij-th entry of A computes the number of edges from i to j, it also computes the number
of one length walks between from i to j. Now we proceed to the inductive case, assuming
the claim holds for some k ≥ 1. To this end, we will prove that

#(k + 1 length walks from i to j) =
∑

j′:Aj′j=1

#(k length walks from i to j′). (1)
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Input: Adjacency matrix A and a natural number k
Result: Ak

1 Result← I;
2 while k 6= 0 do
3 if k mod 2 = 0 then
4 k ← k/2;
5 A = A ∗A
6 end
7 else
8 k ← k − 1;
9 Result← A ∗ Result;

10 end

11 end
12 count← 0 for i from 1 to n do
13 for j from 1 to n do
14 count← count + Ai,j

15 end

16 end
17 return count;

Assuming Equation (??), we are done because by the inductive hypothesis, the number
of k length walks from i to j′ is given by Ak

ij′ . Therefore, the number of k + 1 length

walks from i to j would then be
∑

j′:Aj′j=1A
k
ij′ =

∑
j′ A

k
ij′Aj′j = Ak+1

ij .

We prove Equation (??) in two parts. First, note that we can form a walk from i to j of
length k+ 1 by starting at i and walking to some neighbor of j, say j′, and then walking
on the edge from j′ to j. Every choice of the length k walk from i to j′ followed by the
edge from j′ to j leads to a distinct length k + 1 walk from i to j. Hence,

#(k + 1 length walks from i to j) ≥
∑

j′:Aj′j=1

#(k length walks from i to j′).

Moreover, every k + 1 length walk from i to j, can be decomposed into two parts, the k
length walk starting at i and ending at j’s neighbor and the edge from the neighbor to j.
Furthermore, no two k+1 length walks can have the same decomposition, for otherwise,
the two walks would be identical. Therefore,

#(k + 1 length walks from i to j) ≤
∑

j′:Aj′j=1

#(k length walks from i to j′).

(b) Runtime analysis: Since each matrix multiplication is of runtime O(nw), a total of
log k multiplications gives nw log k. Summing over the matrix is of order n2, making the
total runtime of the algorithm O(nw log k).

3. In class we discussed an algorithm to color the vertices of an undirected n vertex graph with
2 colors so that every edge gets exactly 2 colors (assuming such a coloring exists). We know
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of no such algorithm for finding 3-colorings in polynomial time. Here we’ll figure out how to
color a 3-colorable graph with O(

√
n) colors.

(a) Give a greedy polynomial time algorithm that can properly color the vertices with ∆+1
colors, as long as every vertex of the graph has degree at most ∆.

Solution. Pseudo-Code version:

Input: An undirected graph G = (V,E) with max degree ∆ + 1
Result: Color G using atmost ∆ + 1 colors.

1 for v ∈ V do
2 Let C be {1, 2, . . . ,∆ + 1}
3 for v′ ∈ neighbors of v do
4 Remove the v′color from C
5 end
6 Set vcolor to be an arbitrary color from C

7 end

Runtime: The first loop involves going through every vertex v in the graph, and the
second involves going through every neighbor of v. There are polynomially many vertices
and each vertex has a polynomial number of neighbors, thus the algorithm runs in
polynomial time.

Proof of Correctness: Regardless of how the neighbors of a node are colored, it is
always possible to color a node with one of the ∆ + 1 colors. Each node has at most ∆
neighbors, so there are at most ∆ colors that a node cannot be colored with, yet ∆ + 1
colors are available. Thus we will never run out of color, and thus greedy coloring of the
nodes work.
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(b) Give a polynomial time algorithm that can properly color the graph with O(
√
n) colors,

as long as the input graph is promised to be 3-colorable. HINT: If a vertex v has more
than

√
n neighbors, then argue that the subgraph of the neighbors of v must be bipartite,

and use the algorithm from class to color v and its neighbors with 3 new colors. Continue
this process until every vertex has less than

√
n neighbors, and then use the algorithm

from part (a).

Solution.

Input: An undirected 3-colorable graph G = (V,E).
Result: Color G using at most O(

√
|V |) = O(

√
n) colors.

1 for v ∈ V do
2 if v has at least

√
n uncolored neighbors then

3 Pick 3 new colors, c1, c2, c3;
4 Color v with c1;
5 Color the induced subgraph of v’s uncolored neighbors with c2, c3 by

traversing the subgraph and assign alternating color on the path;
6 end

7 end
8 Let G’ be the induced subgraph of remaining uncolored nodes;
9 Color G’ with algorithm 3(a) using

√
n new colors;

i. Runtime: The first for loop involves inspecting each node, and counting the number
of colored neighbors, which requires inspecting every edge twice and every node once.
Thus, for the first loop overall runs in O(|E|+ |V |) (or O(m+n)) time. Creating the
induced subgraph involves, at most, copying over the original graph, which requires
work proportional to the length of the input, followed by O(m + n) to restrict the
graph to the pertinent edges and vertices. Coloring that takes O(m + n) time,
which follows from the analysis in part (a). Overall, the runtime of this algorithm
ss O(m + n).

ii. Proof of Correctness: In a 3-colorable graph, the neighbors of a single node must
be 2-colorable, because they all share a neighbor of the same color. Hence, every
vertex with more than

√
n (uncolored) neighbors with its neighbours, gets assigned

3 new colors each iteration. The outer loop iterates at most
√
n times, because

each time it does so, it colors at least
√
n uncolored nodes, and there are only n

nodes total. Each iteration uses 3 colors, and thus the first loop uses at most 3
√
n

colors, which is O(
√
n). The second part correctly colors the induced subgraph with

at most
√
n colors, as the first loop reduces the maximum degree in the induced

subgraph to at most
√
n − 1. Therefore, the algorithm uses at most O(

√
n) colors

overall, as desired.
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4. Compute the shortest path tree for the following graph to find all shortest path distances
from s:

s

a

b

c

i

g

h

j

f

d

e

-4

-2
3

4
2

2

2

5

-1

-3

-1

1

-6
3

23

4
2
1

Saturday, January 19, 13

You only need to show the shortest path tree for full credit.

Solution.

s : 0 f : 2

g : 4

j : 4

i : 0 h : −2

e : 0 b : 3 a : 0

d : −3

c : 4

4

2 2

−4

−2

2

3

−6

−3 4

Note that the numbers inside the node are distances
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