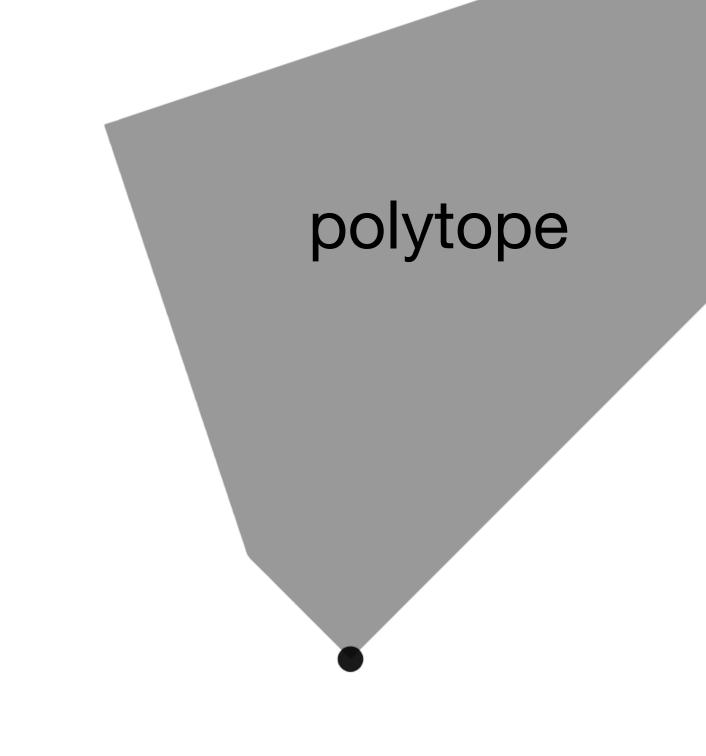
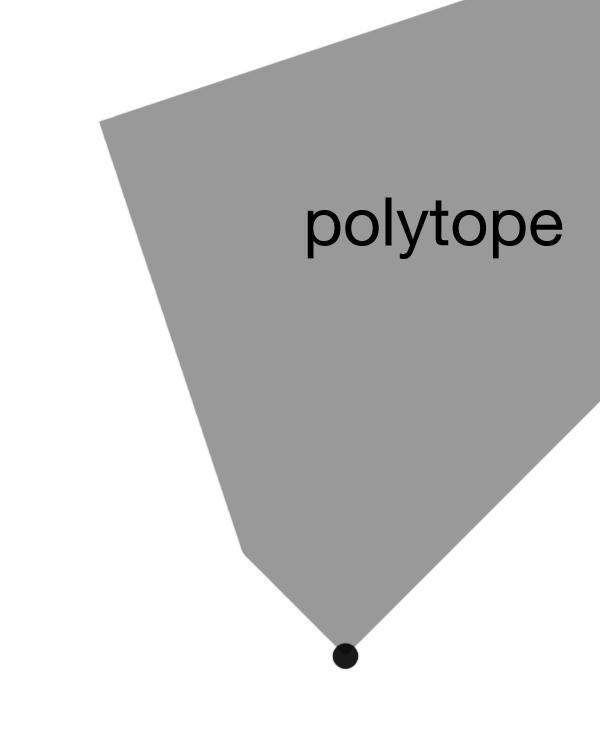
Linear Programming A really very extremely big hammer





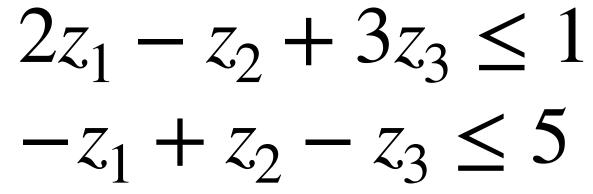


maximize $z_1 + 2z_3$ subject to $2z_1 - z_2 + 3z_3 \le 1$

 $-z_1 + z_2 - z_3 \le 5$

We have fast algorithms for this!

maximize $z_1 + 2z_3$ subject to

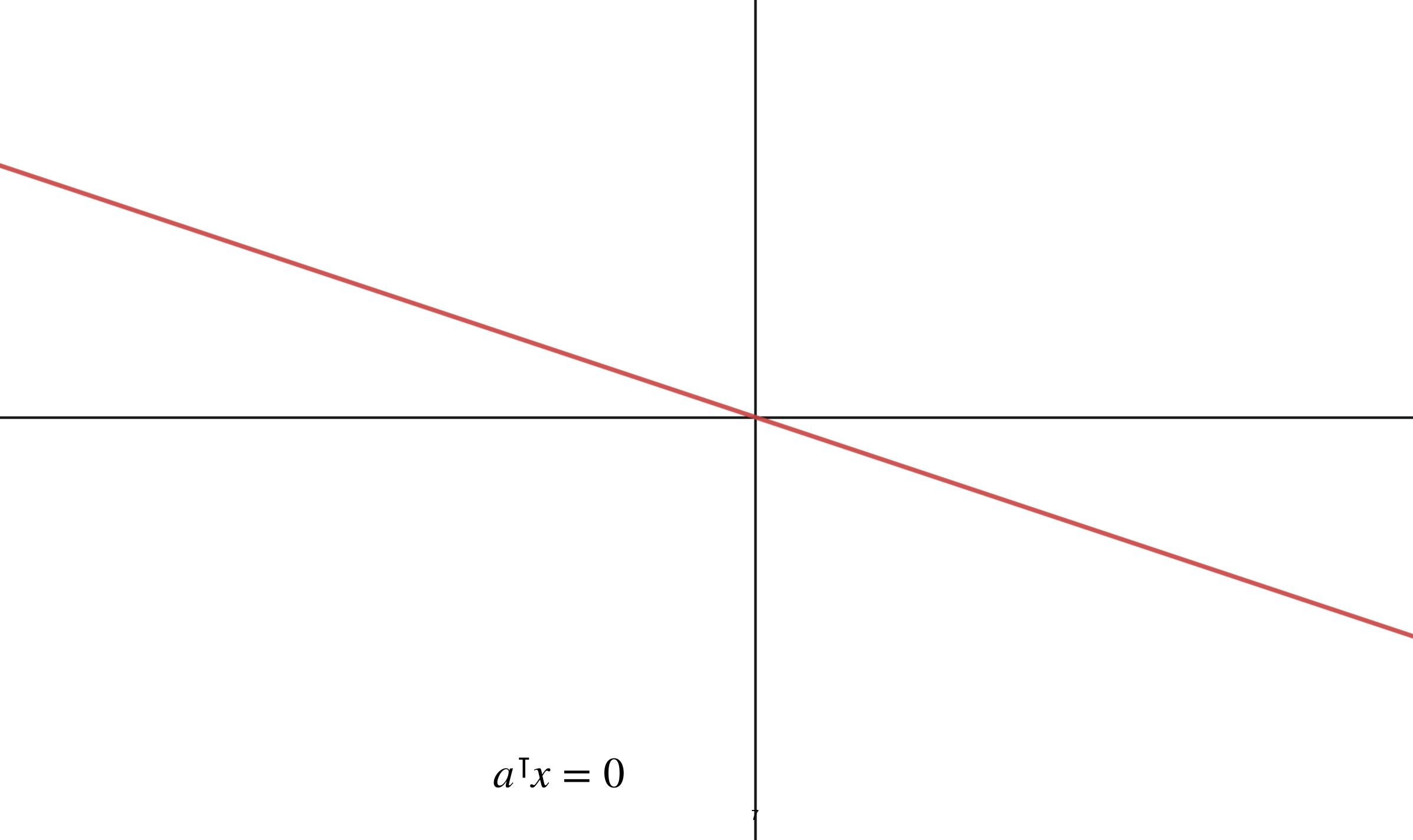


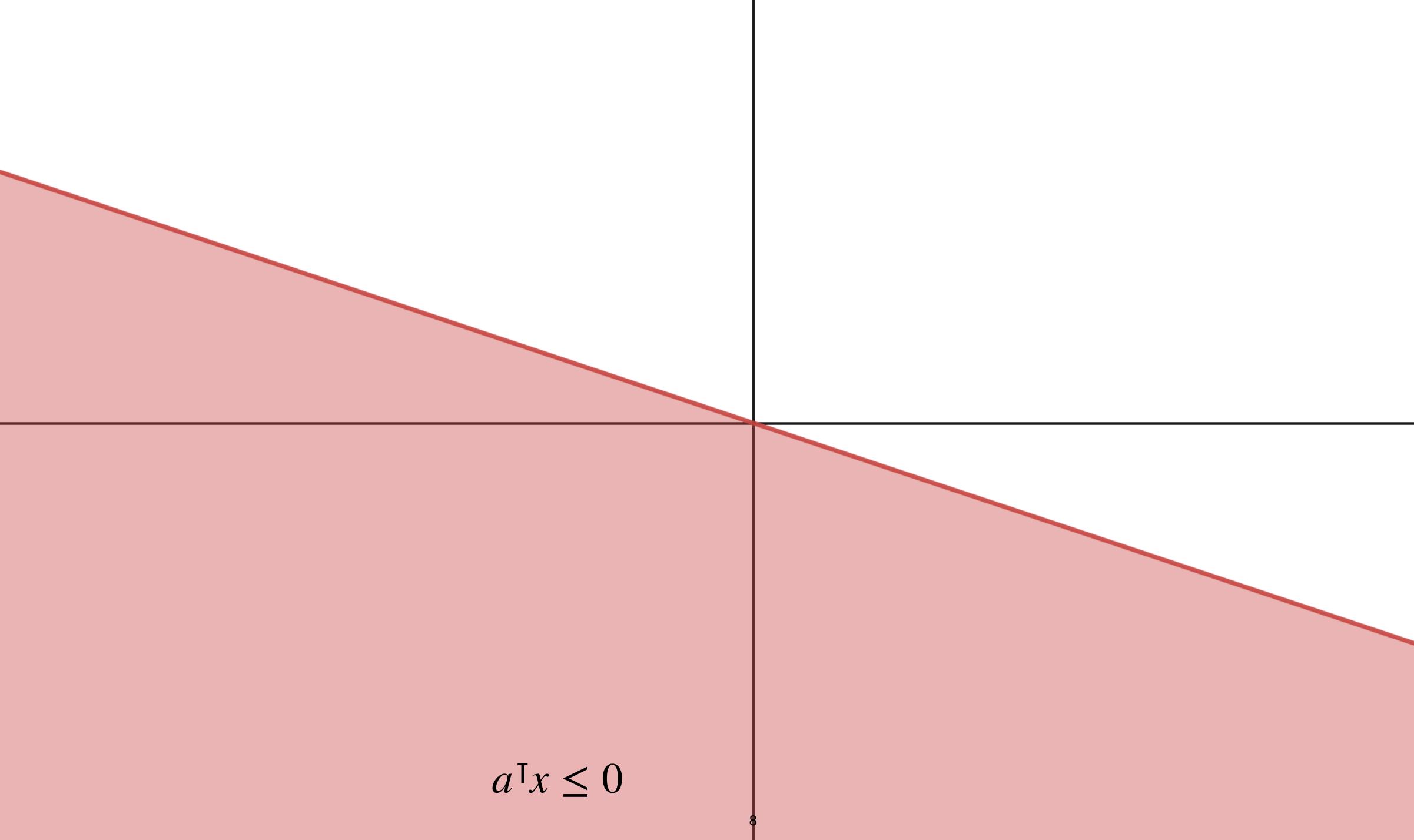
Linear Algebra primer

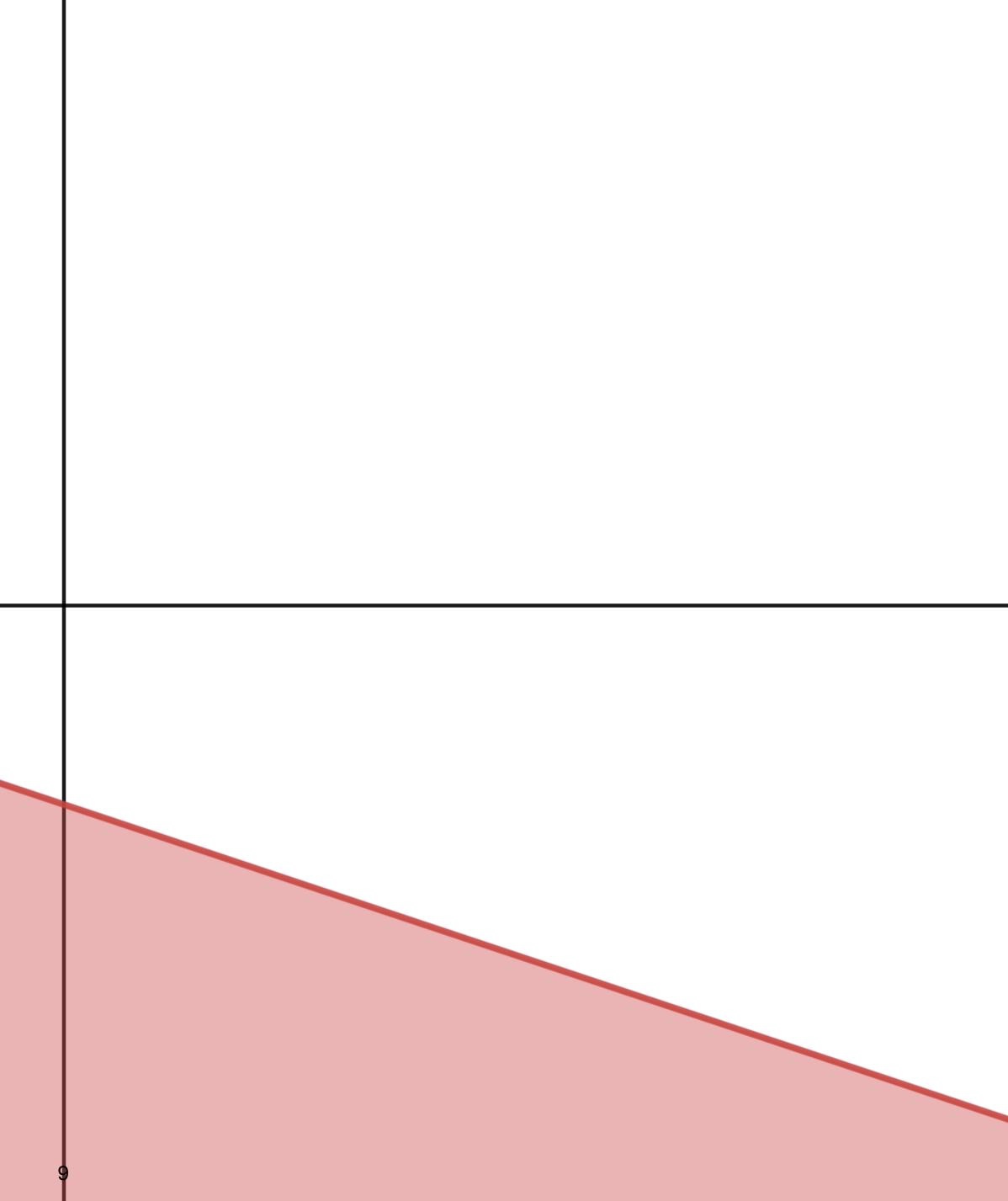
 $a, x \in \mathbb{R}^n$, think of them as column vectors.

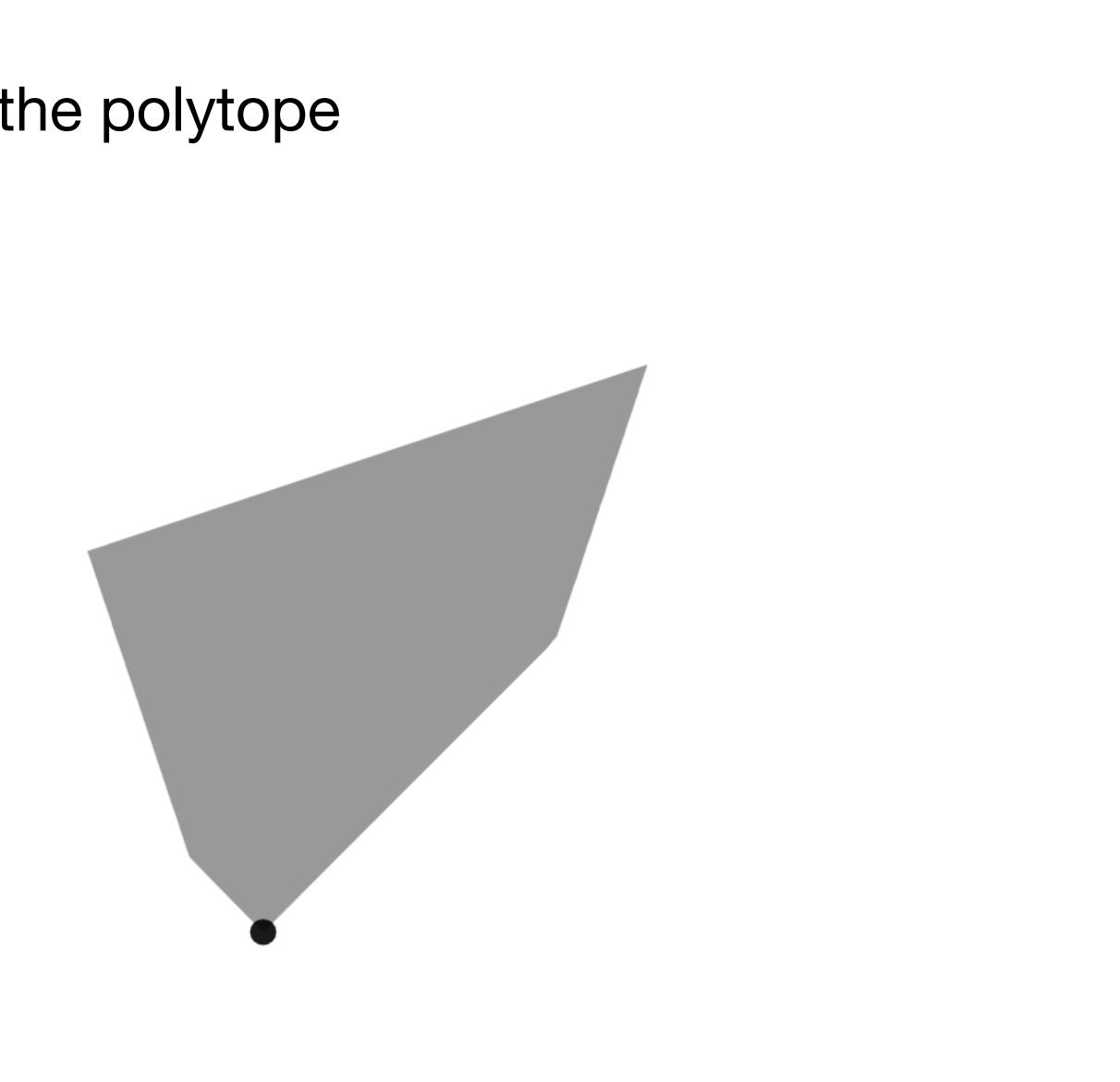
 $a^{\mathsf{T}}x = a_1x_1 + \ldots + a_nx_n$

The set of x satisfying $a^{T}x = 0$ is a hyperplane.









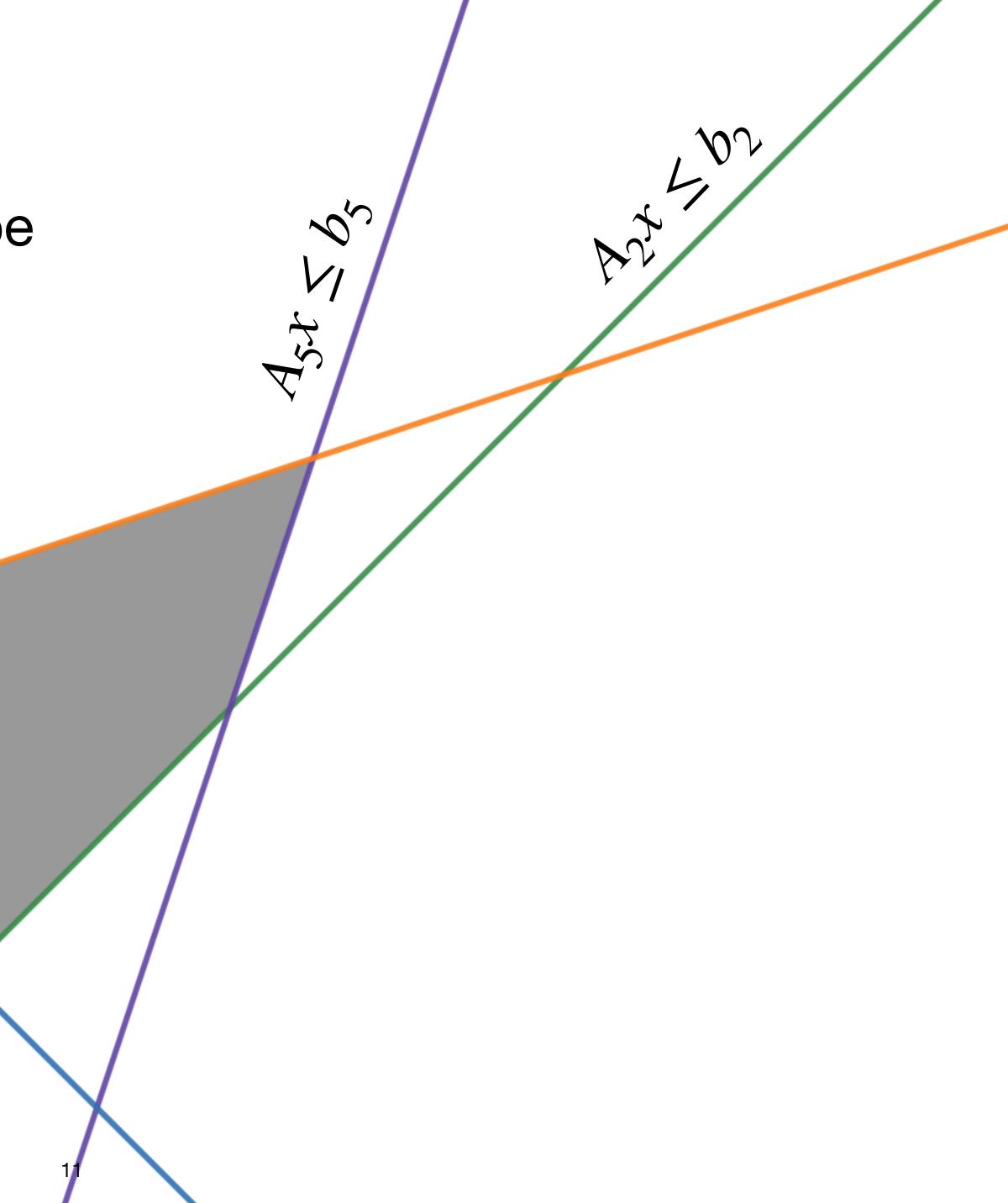
63

34

 $A_1 x \leq b_1$

AAX

N ba



Linear Algebra primer

 $a, x \in \mathbb{R}^n$, think of them as column vectors.

 $a^{\mathsf{T}}x = a_1x_1 + \ldots + a_nx_n$

 $A_1 x$ $A_2 x$ $Ax = A_3 x$

153

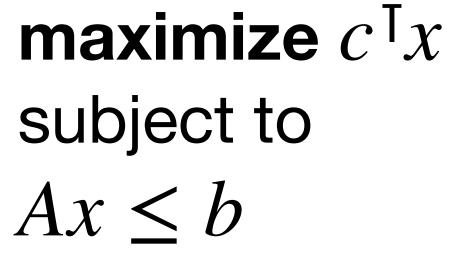
34

 $A_1 x \leq b_1$

AAX

N ba

C



A2402

~~ V1

Asr

 $\begin{array}{l} Ax \leq b \text{ means} \\ (Ax)_i \leq b_i \\ \text{for all } i \end{array}$

Standard form

maximize $c^{\mathsf{T}}x$ subject to $Ax \leq b$ $x \geq 0$

Standard form

maximize $c^{\mathsf{T}}x$ subject to $Ax \leq b$ $x \geq 0$

maximize $z_1 + 2z_3$ subject to $2z_1 - z_2 + 3z_3 \le 1$ $-z_1 + z_2 - z_3 \le 5$

Standard form

maximize $c^{\mathsf{T}}x$ subject to $Ax \leq b$ $x \geq 0$

maximi subject $2(x_{1,a} - (x_{1,a} - x \ge 0)$

$$\begin{array}{c} \text{maximize } z_1 + 2z_3 \\ \text{subject to} \\ 2z_1 - z_2 + 3z_3 \leq 1 \\ -z_1 + z_2 - z_3 \leq 5 \end{array}$$

ize $(x_{1,a} - x_{1,b}) + 2(x_{3,a} - x_{3,b})$
to
 $(x_{1,b}) - (x_{2,a} - x_{2,b}) + 3(x_{3,a} - x_{3,b}) \leq -x_{1,b}) + (x_{2,a} - x_{2,b}) - (x_{3,a} - x_{3,b}) \leq -x_{1,b}) + (x_{2,a} - x_{2,b}) - (x_{3,a} - x_{3,b}) \leq -x_{1,b}) + (x_{2,a} - x_{2,b}) - (x_{3,a} - x_{3,b}) \leq -x_{1,b}) + (x_{2,a} - x_{2,b}) - (x_{3,a} - x_{3,b}) \leq -x_{1,b}) + (x_{2,a} - x_{2,b}) - (x_{3,a} - x_{3,b}) \leq -x_{1,b}) + (x_{2,a} - x_{2,b}) - (x_{3,a} - x_{3,b}) \leq -x_{1,b}) + (x_{2,a} - x_{2,b}) - (x_{3,a} - x_{3,b}) \leq -x_{1,b}) + (x_{2,a} - x_{2,b}) - (x_{3,a} - x_{3,b}) \leq -x_{1,b}) + (x_{2,a} - x_{2,b}) - (x_{3,a} - x_{3,b}) \leq -x_{1,b}) + (x_{2,a} - x_{2,b}) - (x_{3,a} - x_{3,b}) \leq -x_{1,b}) + (x_{2,a} - x_{2,b}) + (x_{2,a} - x_{2,b}) + (x_{2,a} - x_{2,b}) = -x_{1,b}$

Given: a flow network

maximize flow out of s

subject to

Respecting capacities and conservation

Given: a flow network

maximize flow out of s

subject to

Respecting capacities and conservation

subject to

Given: a flow network

maximize flow out of s

subject to

Respecting capacities and conservation

subject to

for all e, $0 \le x_e \le c(e)$

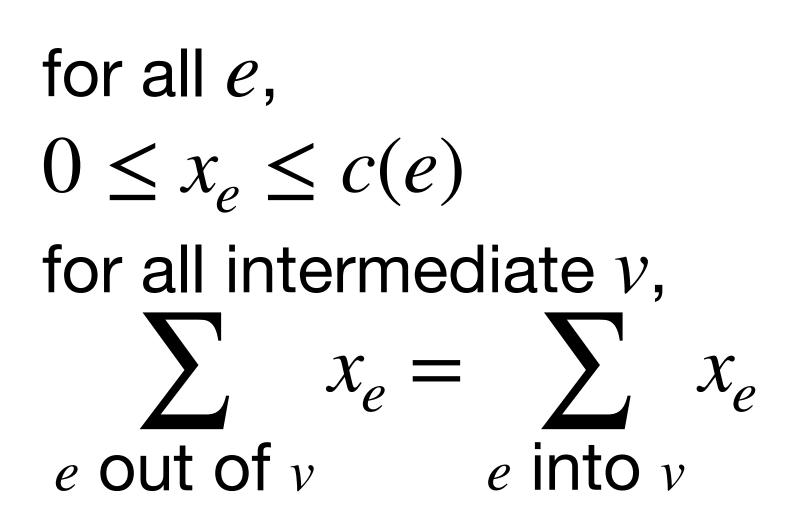
Given: a flow network

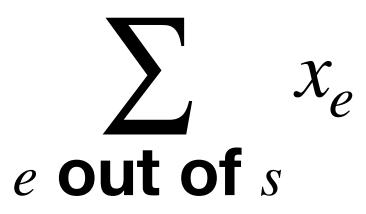
maximize flow out of s

subject to

Respecting capacities and conservation

subject to

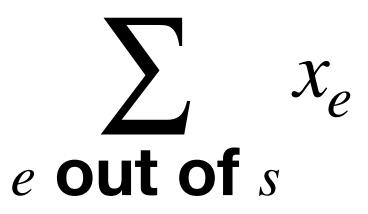




subject to

for all *e*, $0 \le x_e \le c(e)$ for all intermediate v, $\sum x_e =$ $\sum x_e$ $e \text{ out of } v \qquad e \text{ into } v$

maximize $c^{\mathsf{T}}x$ subject to $Ax \le b$ $x \ge 0$

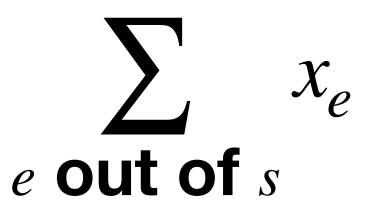


subject to

for all *e*, $0 \le x_e \le c(e)$ for all intermediate v, $\sum x_e = \sum x_e$ $e \text{ out of } v \qquad e \text{ into } v$

maximize $c^{\mathsf{T}}x$ subject to $Ax \le b$ $x \ge 0$

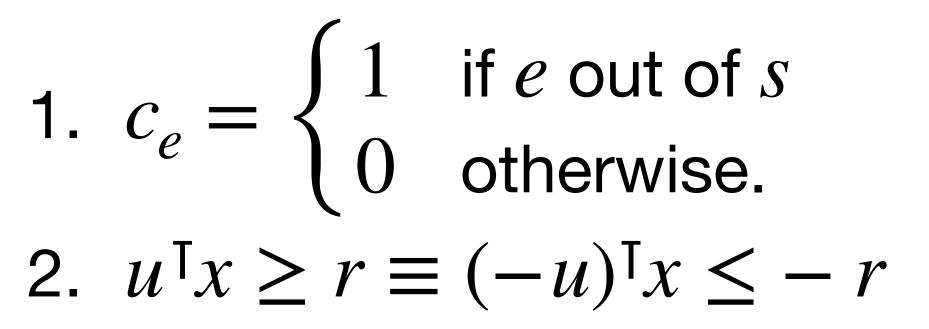
1. $c_e = \begin{cases} 1 & \text{if } e \text{ out of } s \\ 0 & \text{otherwise.} \end{cases}$

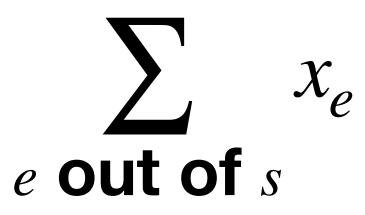


subject to

for all *e*, $0 \leq x_e \leq c(e)$ for all intermediate v, $\sum x_e = \sum x_e$ $e \text{ out of } v \qquad e \text{ into } v$

maximize $c^{\mathsf{T}}x$ subject to $Ax \le b$ $x \ge 0$





subject to

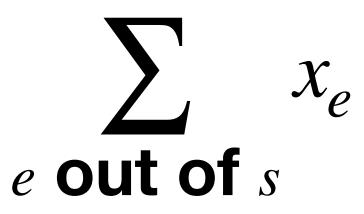
for all *e*, $0 \le x_e \le c(e)$ for all intermediate v, $x_e =$ X_e $e \text{ out of } v \qquad e \text{ into } v$

maximize $c^{\mathsf{T}}x$ subject to $Ax \leq b$ $x \ge 0$

1.
$$c_e = \begin{cases} 1 & \text{if } e \text{ out of } s \\ 0 & \text{otherwise.} \end{cases}$$

2. $u^{\mathsf{T}}x \ge r \equiv (-u)^{\mathsf{T}}x \le -r$
3. $u^{\mathsf{T}}x = r \equiv u^{\mathsf{T}}x \le r, u^{\mathsf{T}}x \ge r$

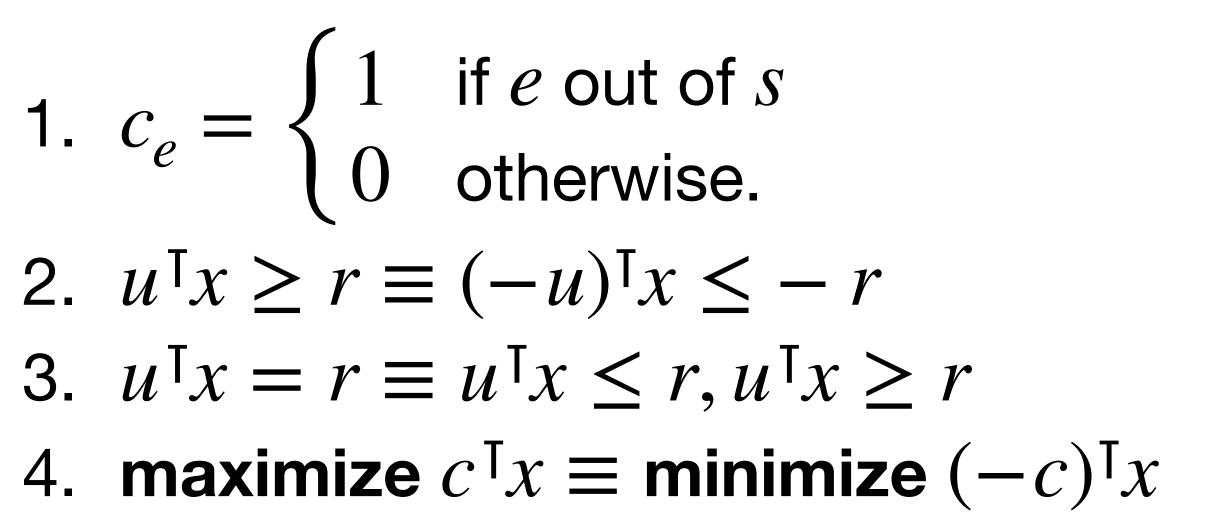
1



subject to

for all *e*, $0 \le x_e \le c(e)$ for all intermediate v, $\sum x_e = \sum x_e$ *e* out of v *e* into v

maximize $c^{\mathsf{T}}x$ subject to $Ax \le b$ $x \ge 0$



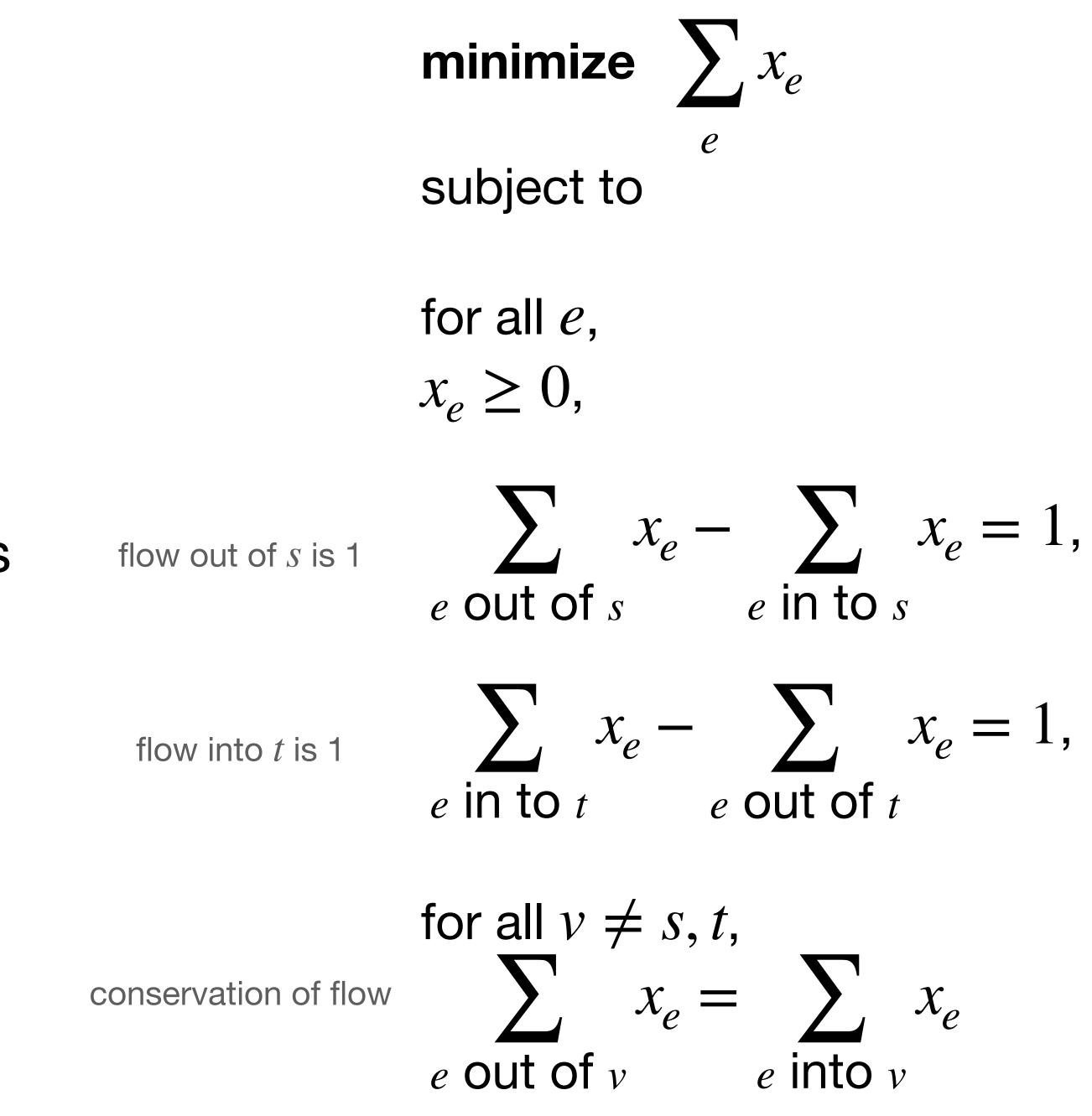
Shortest paths

Given: a directed graph

Find: shortest path from s to t

Shortest paths

- **Given**: a directed graph
- **Find**: shortest path from s to t
- **Claim:** Length of the shortest path is solution to program.

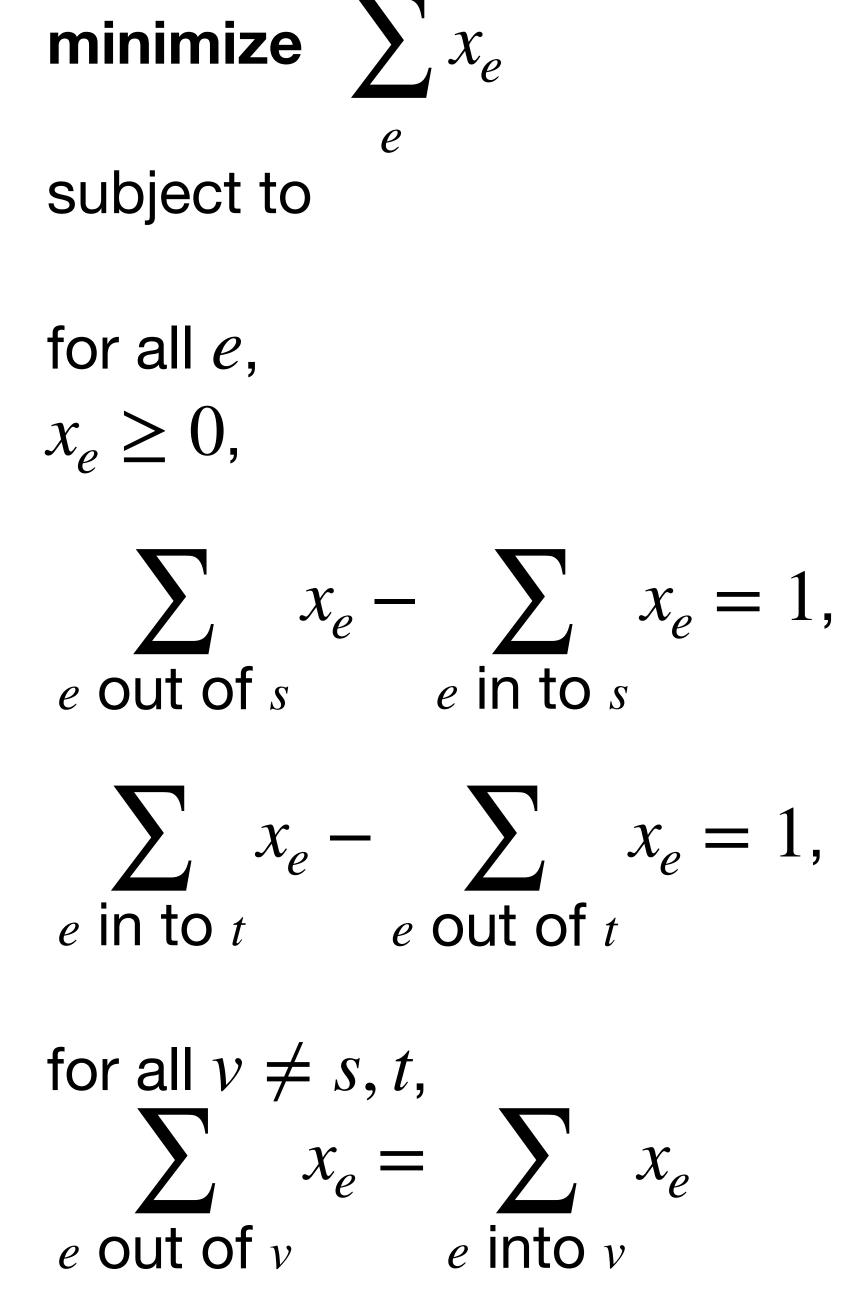




Shortest paths

- **Given**: a directed graph
- **Find**: shortest path from s to t
- **Claim:** Length of the shortest path is solution to program.

Proof sketch: Optimal solution must be a combination of flows on shortest paths. Indeed, if there is a path using edges with $x_e > 0$ that is not a shortest path, delete the flow on this path and reroute it on a shortest path to get a better solution.



Given: an undirected graph

Find: smallest set of vertices touching all edges

Given: an undirected graph

Find: smallest set of vertices touching all edges

minimize $\sum x_{v}$ \mathcal{V} subject to

for all v, $0 \leq x_v \leq 1$,

for all $e = \{u, v\}$ $x_{\mu} + x_{\nu} \geq 1$

Given: an undirected graph

Find: smallest set of vertices touching all edges

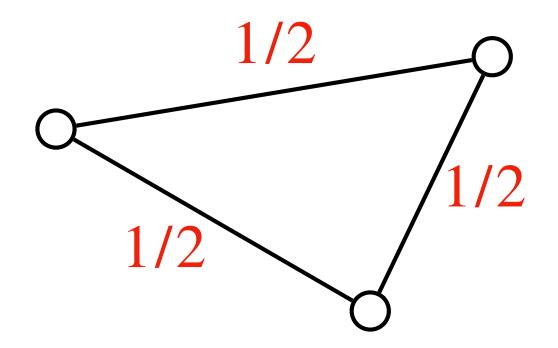
Want $x_{v} = 0 \text{ or } x_{v} = 1$ minimize $\sum x_{v}$ subject to

for all v, $0 \le x_v \le 1$,

for all $e = \{u, v\}$ $x_{\mu} + x_{\nu} \geq 1$

Given: an undirected graph

Find: smallest set of vertices touching all edges



There is a solution of value 3/2, even though smallest vertex cover has size 2.

Want $x_{v} = 0 \text{ or } x_{v} = 1$

 $\sum x_{v}$ minimize subject to

for all v, $0 \le x_v \le 1$,

for all $e = \{u, v\}$ $x_{\mu} + x_{\nu} \geq 1$

maximize $x_1 + 2x_3$ subject to $2x_1 - x_2 + 3x_3 \le 1$ $-x_1 + x_2 - x_3 \le 5$ $x \ge 0$

maximize $x_1 + 2x_3$ subject to $2x_1 - x_2 + 3x_3 \le 1$ $-x_1 + x_2 - x_3 \le 5$ $x \ge 0$

Claim: Optimum ≤ 6

maximize $x_1 + 2x_3$ subject to $2x_1 - x_2 + 3x_3 \le 1$ $-x_1 + x_2 - x_3 \le 5$ $x \ge 0$

Claim: Optimum ≤ 6 Pf: $x_1 + 2x_3$ = $(2x_1 - x_2 + 3x_3) + (-x_1 + x_2 - x_3)$ ≤ 6

a

maximize $x_1 + 2x_3$ subject to $2x_1 - x_2 + 3x_3 \le 1$ $b -x_1 + x_2 - x_3 \le 5$ x > 0

> **Claim:** Optimum ≤ 6 **Pf**: $x_1 + 2x_3$ $= (2x_1 - x_2 + 3x_3) + (-x_1 + x_2 - x_3) = \langle a + 5b \rangle$ ≤ 6

Claim: For all non-negative *a*, *b*, if 2a - b > 1-a + b > 03a - b > 2then opt $\leq a + 5b$

Pf: $x_1 + 2x_3$ $\leq a(2x_1 - x_2 + 3x_3) + b(-x_1 + x_2 - x_3)$

a

b

maximize $x_1 + 2x_3$ subject to $2x_1 - x_2 + 3x_3 \le 1$ primal $-x_1 + x_2 - x_3 \le 5$ x > 0minimize a + 5bsubject to $2a - b \ge 1$ dual -a + b > 0 $3a - b \ge 2$ $a, b \ge 0$

Claim: For all non-negative *a*, *b*, if 2a - b > 1-a + b > 03a - b > 2then opt $\leq a + 5b$

Pf: $x_1 + 2x_3$ $\leq a(2x_1 - x_2 + 3x_3) + b(-x_1 + x_2 - x_3)$ < a + 5b.

a

b

maximize $x_1 + 2x_3$ subject to $2x_1 - x_2 + 3x_3 \le 1$ primal $-x_1 + x_2 - x_3 \le 5$ x > 0maximize -a - 5bsubject to -2a + b < -1dual a-b < 0 $-3a + b \le -2$ $a, b \ge 0$

Claim: For all non-negative *a*, *b*, if 2a - b > 1-a + b > 03a - b > 2then opt $\leq a + 5b$

Pf: $x_1 + 2x_3$ $\leq a(2x_1 - x_2 + 3x_3) + b(-x_1 + x_2 - x_3)$ < a + 5b.

a

b

maximize $x_1 + 2x_3$ subject to $2x_1 - x_2 + 3x_3 \le 1$ primal $-x_1 + x_2 - x_3 \le 5$ x > 0maximize -a - 5bsubject to $-2a + b \le -1$ dual a-b < 0 $-3a + b \le -2$ $a, b \ge 0$

What is dual of dual?

maximize $x_1 + 2x_3$ subject to $2x_1 - x_2 + 3x_3 \le 1$ primal a $b -x_1 + x_2 - x_3 \le 5$ x > 0maximize -a - 5bsubject to $y_1 -2a + b < -1$ dual $y_2 \quad a - b < 0$ $-3a + b \le -2$ y_3 $a, b \ge 0$

What is dual of dual?

minimize $-y_1 - 2y_3$ subject to $-2y_1 + y_2 - 3y_3 \ge -1$ $y_1 - y_2 + y_3 \ge -5$ $y \ge 0$

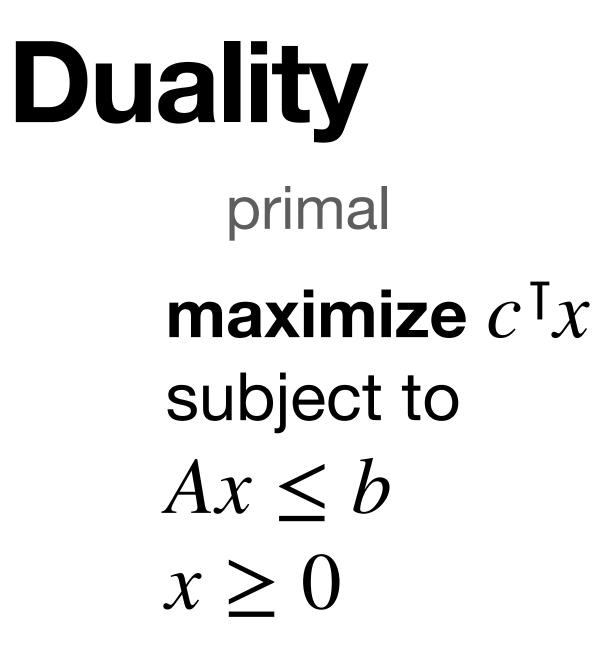
maximize $x_1 + 2x_3$ subject to $2x_1 - x_2 + 3x_3 \le 1$ primal a $b -x_1 + x_2 - x_3 \le 5$ x > 0maximize -a - 5bsubject to $y_1 -2a + b < -1$ dual $y_2 \quad a - b < 0$ $-3a+b \le -2$ y_3 $a, b \ge 0$

What is dual of dual?

minimize $-y_1 - 2y_3$ subject to $-2y_1 + y_2 - 3y_3 \ge -1$ $y_1 - y_2 + y_3 \ge -5$ $y \ge 0$

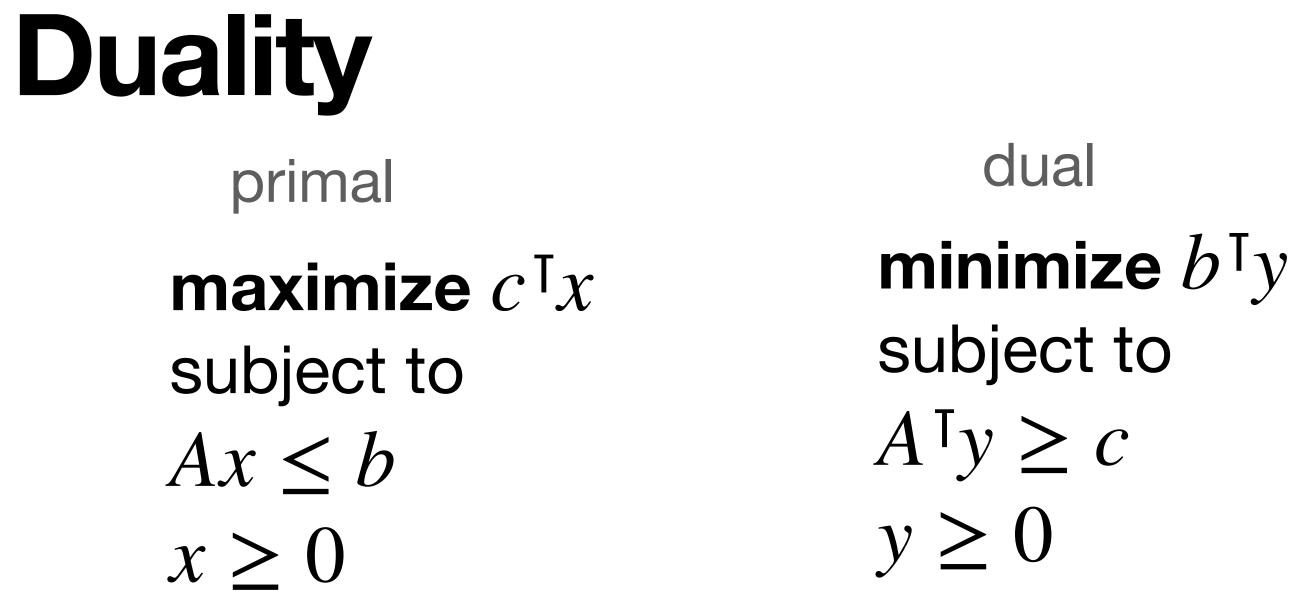
equivalent to

maximize $y_1 + 2y_3$ subject to $2y_1 - y_2 + 3y_3 \le 1$ $-y_1 + y_2 - y_3 \le 5$ $y \ge 0$



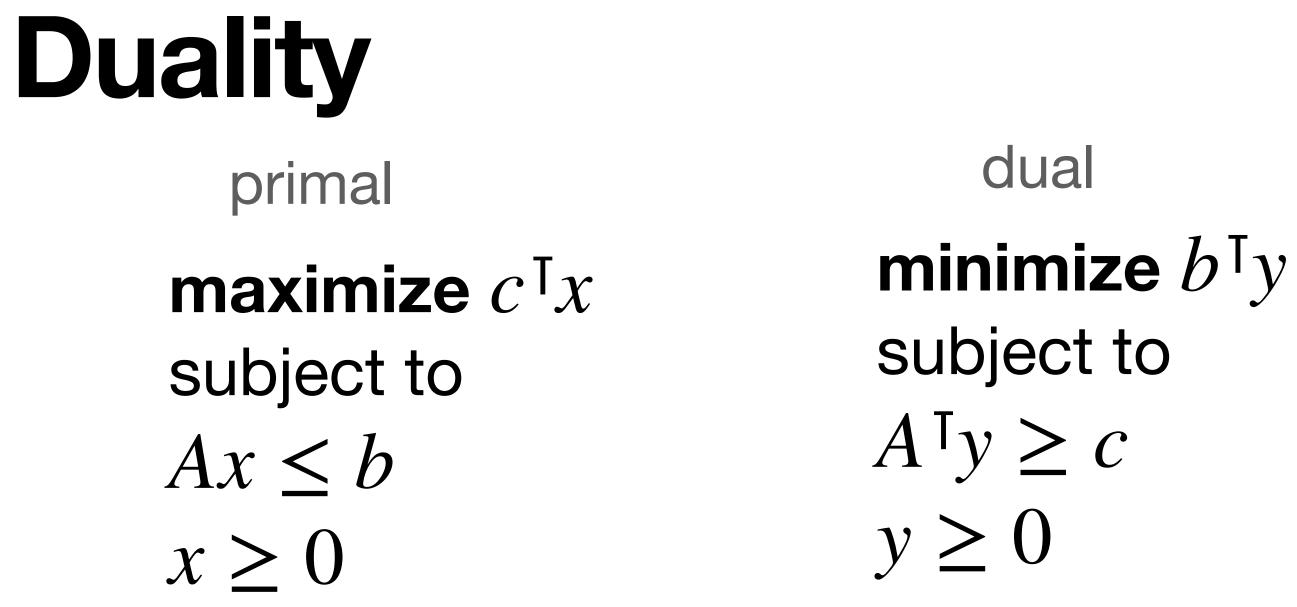
dual minimize $b^{\mathsf{T}}y$ subject to $A^{\mathsf{T}}y \ge c$ $y \ge 0$

dual maximize $(-b)^{T}y$ subject to $(-A)^{T}y \leq -c$ $y \geq 0$



Thm: The dual of the dual is the primal.

dual maximize $(-b)^{\mathsf{T}}y$ subject to $(-A)^{\mathsf{T}} y \leq -c$ $y \ge 0$

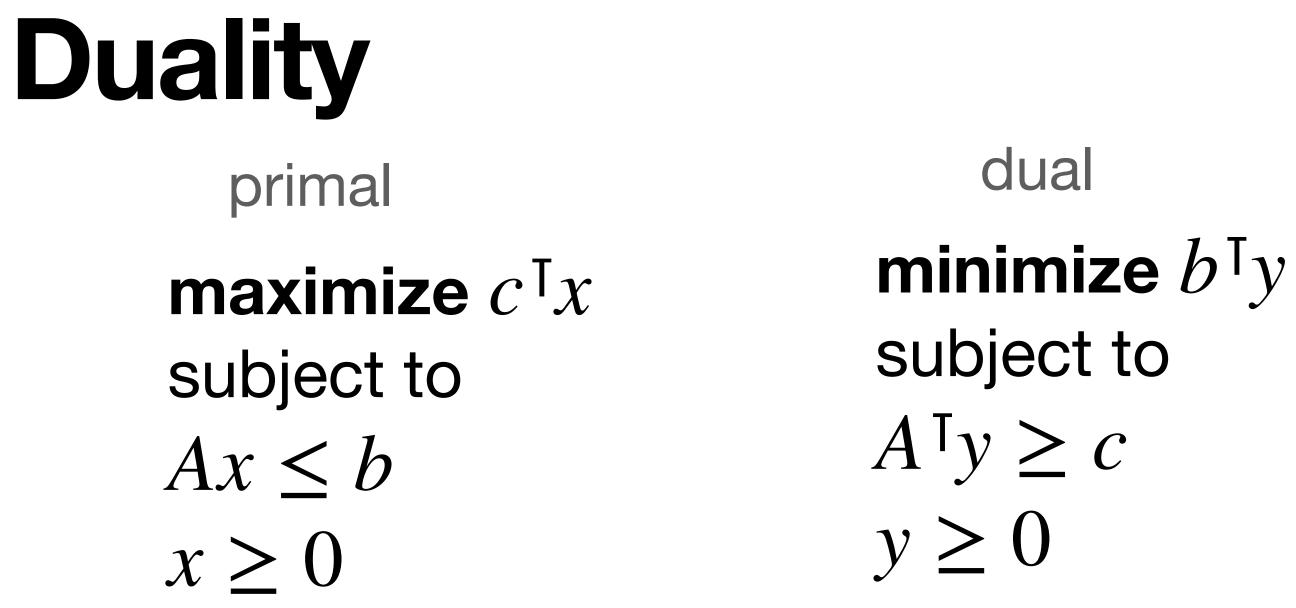


Thm: The dual of the dual is the primal.

dual of dual minimize $(-c)^{\mathsf{T}}x$ subject to $((-A)^{\mathsf{T}})^{\mathsf{T}}x \ge -b$ $x \ge 0$

 \equiv

dual maximize $(-b)^{\mathsf{T}}y$ subject to $(-A)^{\mathsf{T}} y \leq -c$ $y \ge 0$



Thm: The dual of the dual is the primal. dual of dual minimize $(-c)^{\mathsf{T}}x$ **maximize** $c^{\mathsf{T}}x$ subject to subject to $((-A)^{\mathsf{T}})^{\mathsf{T}}x \ge -b$ $Ax \leq b$ $x \ge 0$ $x \ge 0$ 45

 \equiv

dual maximize $(-b)^{\mathsf{T}}y$ subject to $(-A)^{\mathsf{T}} y \leq -c$ $y \ge 0$

primal

maximize $c^{T}x$ subject to $Ax \leq b$ $x \ge 0$

Thm: The dual of the dual is the primal.

Thm: (Weak Duality) Every solution to primal is at most every solution to dual.

dual minimize $b^{\mathsf{T}}y$ subject to $A^{\mathsf{T}}y = c$ $y \ge 0$

primal **maximize** $c^{\mathsf{T}}x$ subject to $Ax \leq b$ $x \ge 0$

Thm: The dual of the dual is the primal.

Thm: (Weak Duality) Every solution to primal is at most every solution to dual.

value is equal to optimal solution of dual.

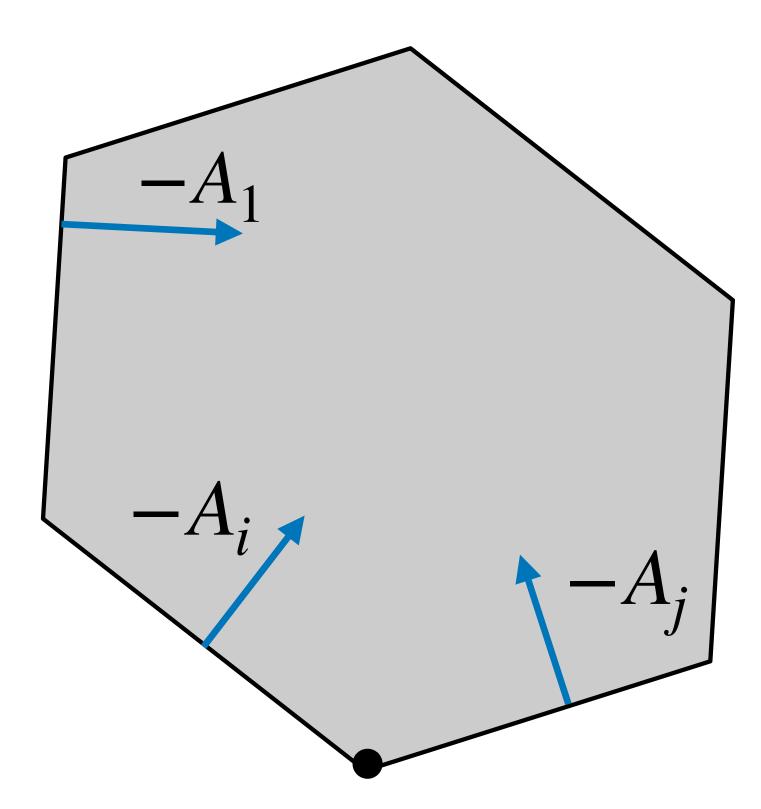
dual minimize $b^{\mathsf{T}}y$ subject to $A^{\mathsf{T}}y = c$ $y \ge 0$

- Thm: (Strong Duality) If primal has solution of finite value, then

primal maximize $c^{T}x$ subject to $Ax \le b$ $x \ge 0$

dual minimize $b^{\mathsf{T}}y$ subject to $A^{\mathsf{T}}y \leq c$ $y \geq 0$ Fact: A vertex is point for which *n* of the inequalities become tight.

Thm: (Strong Duality) If primal has solution of finite value, then value is equal to optimal solution of dual. The second seco



By physics:

There must be $y_i, y_j \ge 0$

$$\begin{aligned} A_i + y_j A_j &= c. \\ \hat{A}x &= \hat{b} \text{ correspond to sides touching } x, \\ {}^{\mathsf{T}}y &= \hat{A}{}^{\mathsf{T}}\hat{y} &= c. \end{aligned}$$

Then

$${}^{\mathsf{T}}y_{_{48}} = \hat{b}{}^{\mathsf{T}}\hat{y} = (\hat{A}x){}^{\mathsf{T}}y = x{}^{\mathsf{T}}\hat{A}{}^{\mathsf{T}}\hat{y} = x{}^{\mathsf{T}}c = c$$



Duality of Max flow minimize $c^{\mathsf{T}}a$ maximize X_e subject to e out of s fo subject to a_e fo for all *e*, a_e $0 \le x_e \le c(e)$ fo for all intermediate v, a_e $x_e =$ X_e *e* out of *v e* into *v* for all e

or all
$$e = (s, v)$$
,
 $e + b_v \ge 1$
or all $e = (u, t)$,
 $e - b_u \ge 0$
or all other $e = (u, v)$,
 $e - b_u + b_v \ge 0$

 $a_e \geq 0$

Duality of Max flow minimize $c^{\mathsf{T}}a$ maximize X_e subject to e out of s fo subject to a_e fo for all *e*, a_e $0 \leq x_e \leq c(e)$ for all other e = (u, v), for all intermediate v, $x_e =$ X_e *e* out of *v e* into *v* for all e

$$e^{r} \text{ all } e = (s, v),$$

$$e^{r} + b_{v} \ge 1$$

or all
$$e = (u, t), \equiv e^{-b_u} \ge 0$$

 $a_{\rho} - b_{\mu} + b_{\nu} \ge 0$

minimize $c^{T}a$

subject to

- $b_{s} = 1, b_{t} = 0$
- for all e = (u, v), $a_e \geq b_\mu - b_\nu$
- for all e $a_e \geq 0$

 $a_e \geq 0$

minimize $c^{\mathsf{T}}a$

subject to

for all e = (s, v), $a_e + b_v \le 1$ for all e = (u, t), $a_{\rho} - b_{\mu} \leq 0$ for all other e = (u, v), $a_e - b_\mu + b_\nu \le 0$

minimize $c^{\mathsf{T}}a$

subject to

 $b_{s} = 1, b_{t} = 0$

for all e = (u, v), $a_e \geq b_\mu - b_\nu$

for all *e* $a_{\rho} \geq 0$ C _____

for all e $a_e \ge 0$

minimize $c^{T}a$

subject to

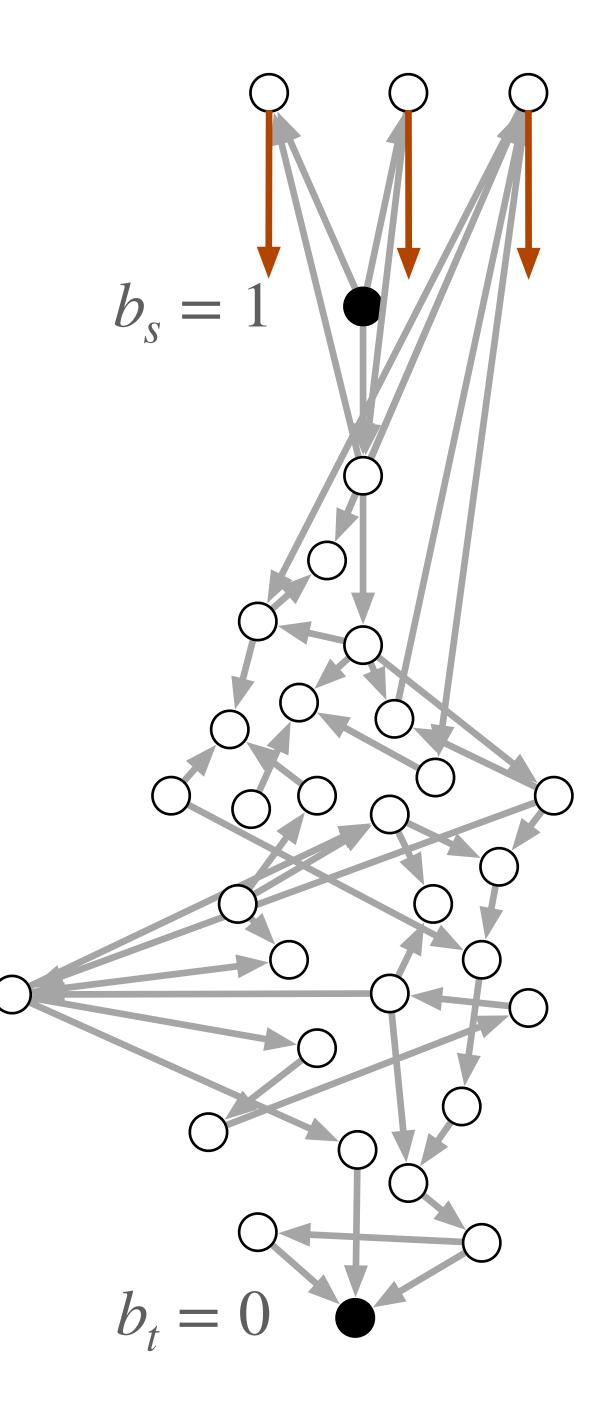
 \equiv

 $b_s = 1, b_t = 0$

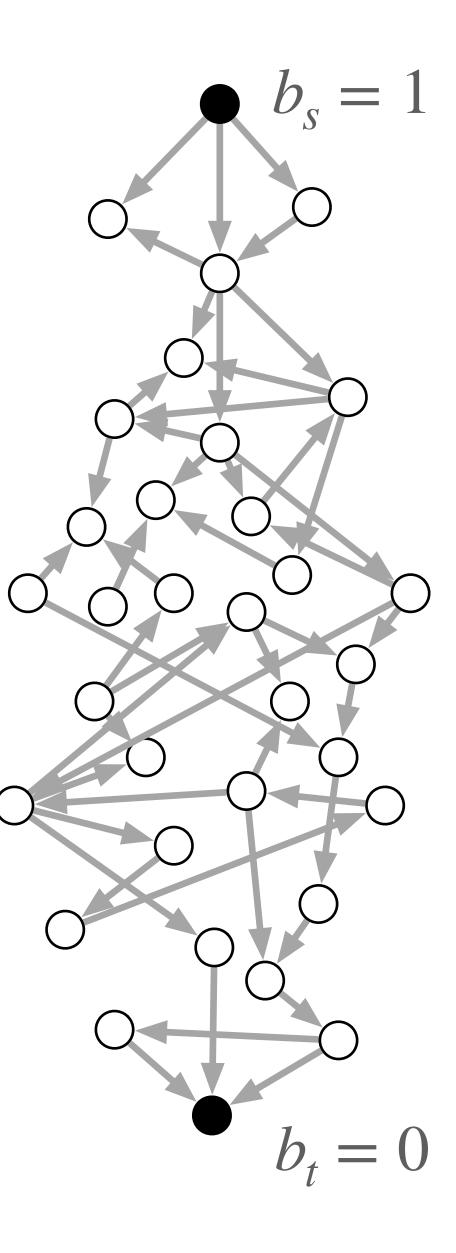
for all e = (u, v), $a_{\rho} = \max\{0, b_{\mu} - b_{\nu}\}$

minimize $c^{\mathsf{T}}a$ subject to $b_s = 1, b_t = 0$ $0 \leq b_{\mu} \leq 1$ for all e = (u, v), $a_e = \max\{0, b_u - b_v\}$

Claim: Opt is achieved with $1 \ge b_u \ge 0.$ Pf: Take any solution and move the extreme values up/down. The solution only improves.



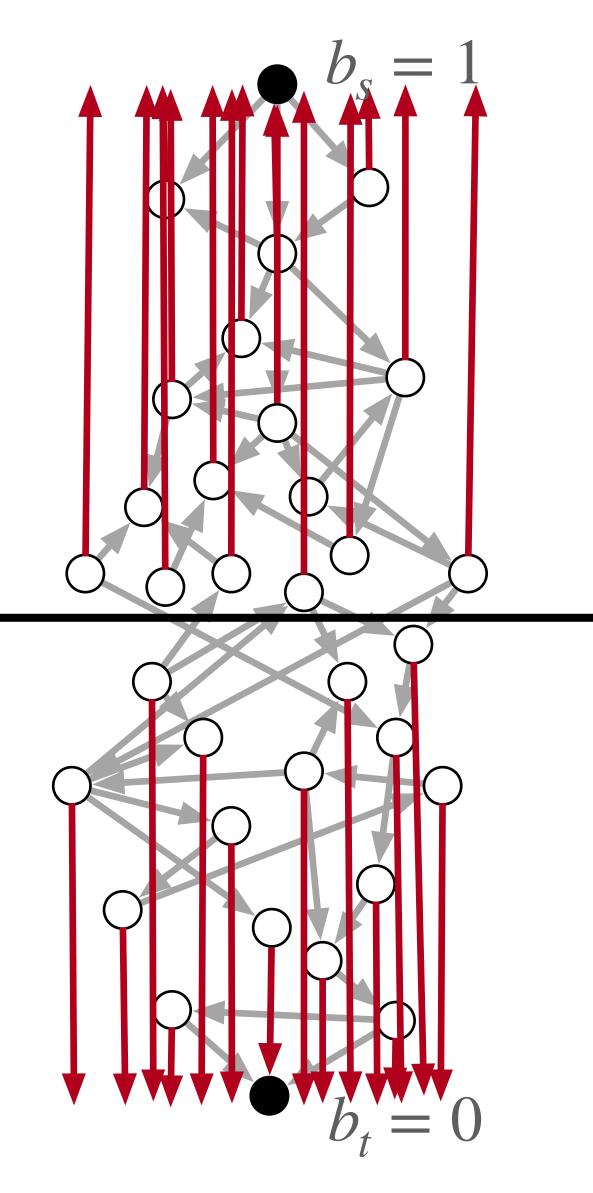
minimize $c^{\mathsf{T}}a$ subject to $b_s = 1, b_t = 0$ $0 \le b_u \le 1$ for all e = (u, v), $a_e = \max\{0, b_u - b_v\}$



minimize $c^{\mathsf{T}}a$ subject to $b_s = 1, b_t = 0$ $0 \leq b_{\mu} \leq 1$ for all e = (u, v), $a_e = \max\{0, b_{\mu} - b_{\nu}\}$

Claim: Opt is achieved with $b_{\mu} = 0/1.$ Pf: Pick $0 \le t \le 1$ uniformly at random. If $b_{\mu} \geq t$, set otherwise set it to 0. The expected value of resulting solution is the same as original!

$$b_u = 1$$
,

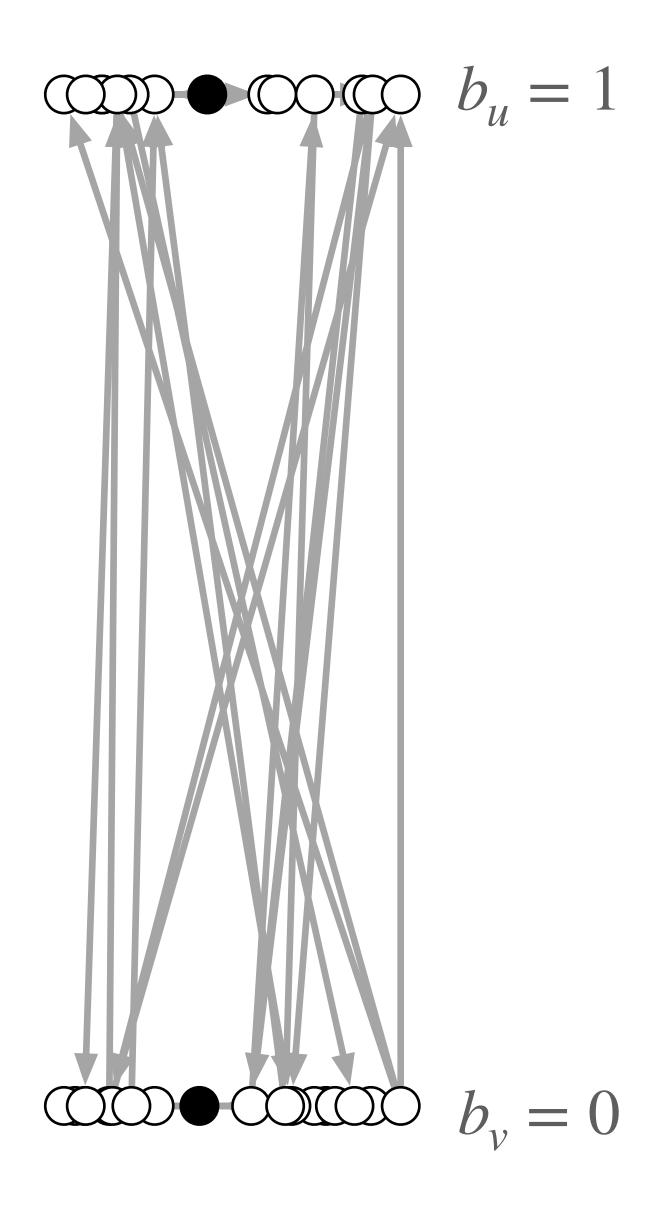


minimize $c^{T}a$

subject to

 $b_s = 1, b_t = 0$ $b_u \in \{0,1\}$ for all e = (u, v), $a_e = \max\{0, b_u - b_v\}$

Min-Cut!



Duality of Shortest Path

minimize $\sum x_e$

subject to

for all e, $x_e \geq 0$,

 $\sum x_e - \sum x_e = 1,$ *e* out of *s e* in to *s* $\sum x_e - \sum x_e = -1,$ *e* out of t *e* in to tfor all $v \neq s, t$, $x_e - \sum x_e = 0$ e into v e out of v

Duality of Shortest Path

minimize $\sum x_e$

subject to

for all *e*, $x_{\rho} \geq 0$,

 $\sum x_e - \sum x_e = 1,$ *e* out of *s e* in to *s*

subject to

 $\sum x_e - \sum x_e = -1,$ *e* out of t *e* in to t

for all $v \neq s, t$, $x_e - \sum x_e = 0$ e into v e out of v

dual

maximize $a_s - a_t$

for all edges e = (u, v), $a_{\mu} - a_{\nu} \leq 1$

Duality of Shortest Path

minimize $\sum x_e$

subject to

for all e, $x_e \geq 0$,

 $\sum x_e - \sum x_e = 1,$ *e* out of *s e* in to *s*

subject to

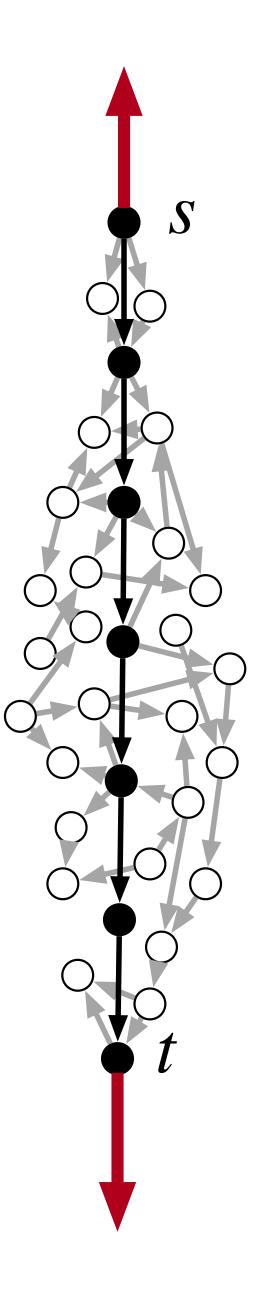
 $\sum x_e - \sum x_e = -1,$ $e \text{ out of } t \qquad e \text{ in to } t$

for all $v \neq s, t$, $x_e - \sum x_e = 0$ e out of v e into v

dual

maximize $a_s - a_t$

for all edges e = (u, v), $a_{\mu} - a_{\nu} \leq 1$



Duality and zero-sum games

Two player zero-sum game:

an $m \times n$ matrix G

probability distribution on row strategies A column vector x with $G_{i,i}$: payoff to row player, assuming row player uses $x_i \ge 0, \ \sum x_i = 1$ strategy *i*, and column player uses strategy *j*. probability distribution on column strategies $-G_{i,i}$: payoff to column player. $y_i \ge 0$, $\sum y_j = 1$ **Example: Chess** *i*: specifies how white would move in every possible

board configuration.

j: specifies how black would move.

$$G_{i,j} = \begin{cases} 1 & \text{if white wins} \\ -1 & \text{if black wins} \\ 0 & \text{stalemate} \end{cases}$$

Randomized strategy:

expected payoff to row player $x^{\dagger}Gv$

Who decides on their strategy first?

If row player commits to x

Row player will get payoff $\min_{y} x^{\mathsf{T}} G y = \min_{j} (x^{\mathsf{T}} G)_{j}$ So, if row player has to play first: $\max_{x} \min_{y} x^{\mathsf{T}} G y$

If column player commits to \boldsymbol{y}

Row player will get payoff $\max_{x} x^{\mathsf{T}} G y = \max_{i} (Gy)_{i}$ So, if column player has to play first $\min_{y} \max_{x} x^{\mathsf{T}} G y$

Randomized strategy:

probability distribution on row strategies A column vector x with $x_i \ge 0$, $\sum_i x_i = 1$ probability distribution on column strategies $y_i \ge 0$, $\sum_j y_j = 1$

expected payoff to row player $x^{\mathsf{T}}Gy$

von-Neumann's min-max Theorem

If row player commits to x

Row player will get payoff $\min_{y} x^{T}Gy = \min_{j} (x^{T}G)_{j}$ So, if row player has to play first: $\max_{x} \min_{y} x^{T}Gy$

If column player commits to \boldsymbol{y}

Row player will get payoff $\max_{x} x^{\mathsf{T}} G y = \max_{i} (Gy)_{i}$ So, if column player has to play first $\min_{y} \max_{x} x^{\mathsf{T}} G y$ Doesn't matter who plays first:

Thm: $\max \min_{x} x^{\mathsf{T}} G y = \min_{y} \max_{x} x^{\mathsf{T}} G y.$

Using strong duality

Thm: max min $x^{T}Gy = \min \max x^{T}Gy$. x y y x $\max_{x} \min_{j} (x^{\mathsf{T}}G)_{j} = \min_{y} \max_{i} (Gy)_{i}$

primal

maximize zsubject to

$$w \quad x_1 + \ldots + x_m = 1$$

 $x \ge 0$

for all j,

 $y_j \quad z \leq (x^{\mathsf{T}}G)_j$

dual

minimize wsubject to

coefficient of *z* must be 1

$$y_1 + \ldots + y_m = 1$$

coefficient of x_i must be ≥ 0 $w \ge (Gy)_i$

for all *i*,

 $y \ge 0$

Algorithms for Linear programs

Simplex Algorithm

Simple Often fast in practice Not polynomial time (on pa

Ellipsoid Algorithm

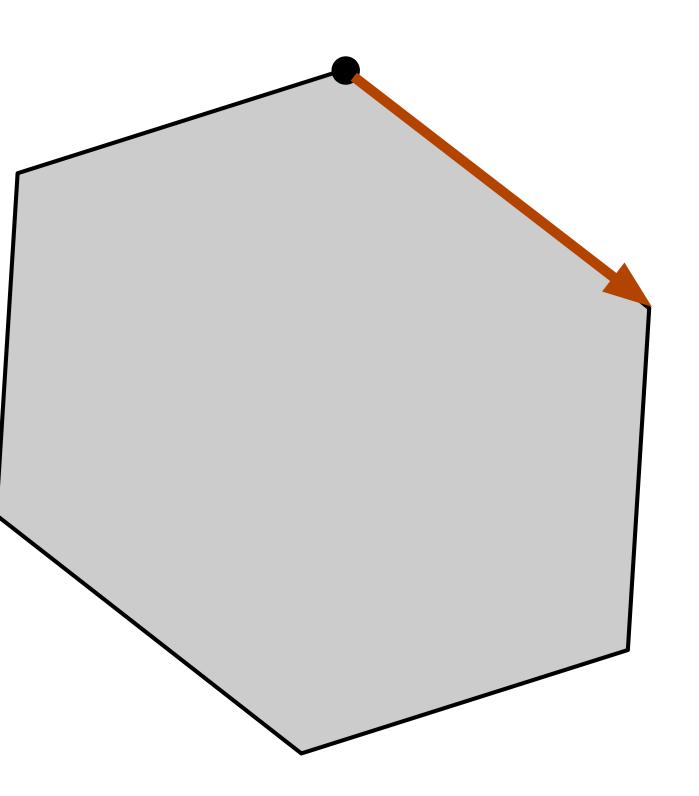
More complicated Polynomial time, but not always fast

Not polynomial time (on pathological counterexamples)

Simplex

Start with a vertex In each step, move to a lower vertex

Problem: Number of vertices on this path can be exponential!



Simplex: how to find initial vertex?

maximize $c^{\mathsf{T}}x$ subject to $Ax \leq b$ $x \geq 0$

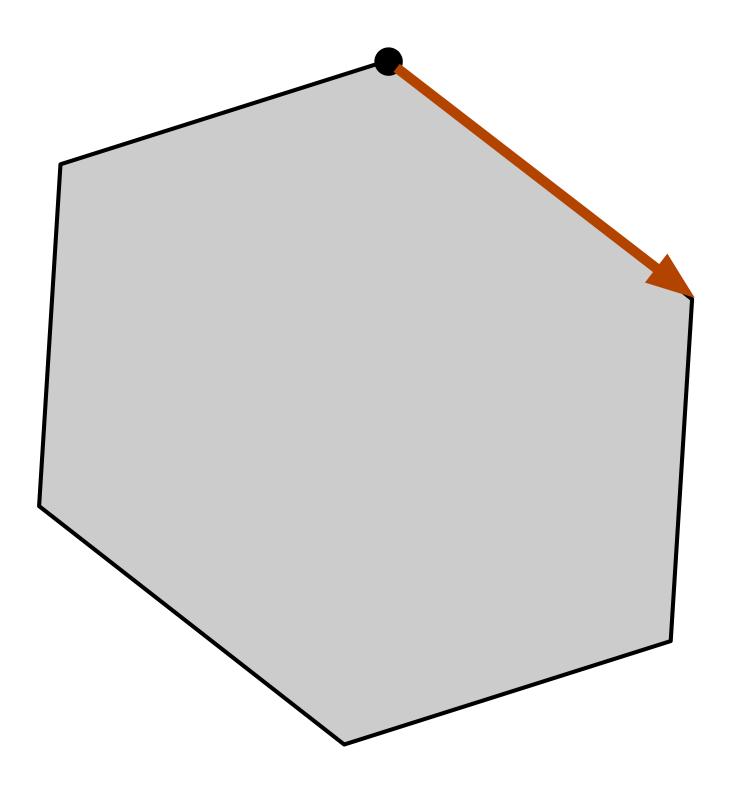
> For this program, $z_i = \max\{0, -b_i\}, x = 0$ is a vertex. Run simplex to find a solution with z = 0. The *x* value of solution will be a vertex of original program!

minimize $z_1 + z_2 + \dots$ subject to $Ax \le b + z$ $x, z \ge 0$

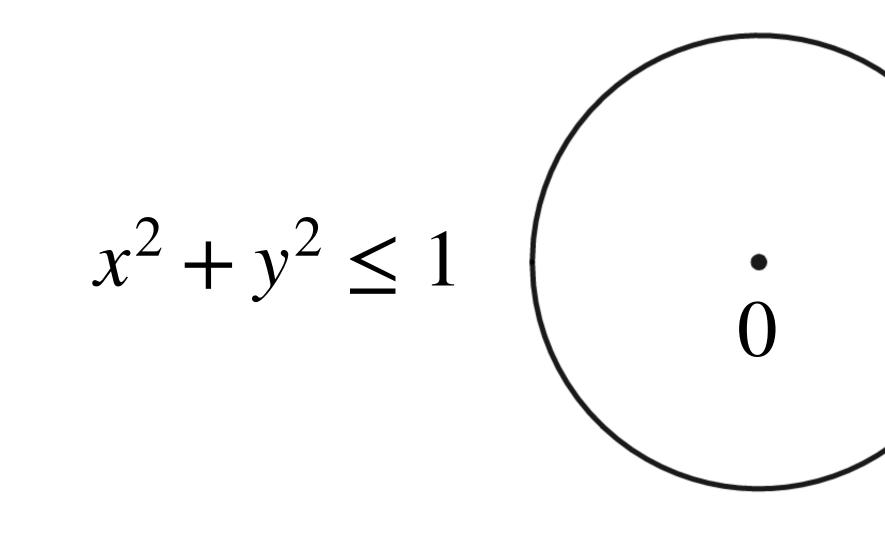
Simplex: how to go to better vertex?

maximize $c^{\mathsf{T}}x$ subject to $Ax \leq b$ $x \ge 0$

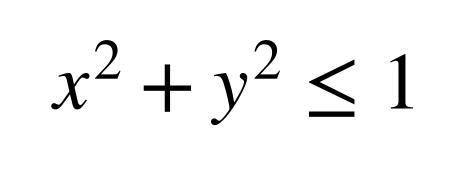
- the equations, $c^{\mathsf{T}}y > 0$. some new equation becomes tight.
- 1. There must be $\hat{A}x = \hat{b}$. 2. Find *y* satisfying n - 1 of 3. Change $x = x + \epsilon y$, until

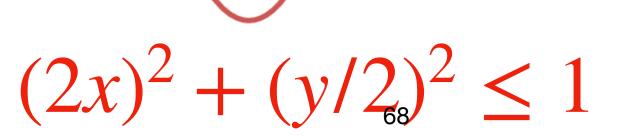


Ellipsoid: a squished ball



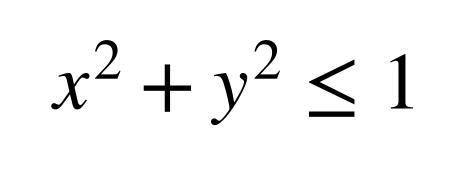
Ellipsoid: a squished ball





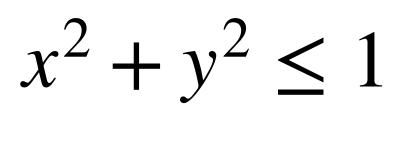
ullet

Ellipsoid: a squished ball



ullet

Ellipsoid: a squished ball

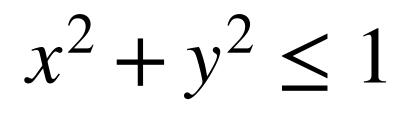


Ratio of area of ellipsoid to sphere: 2

 $(2x)^2 + (y/2)^2 \le 1$

ullet

Ellipsoid: a squished ball

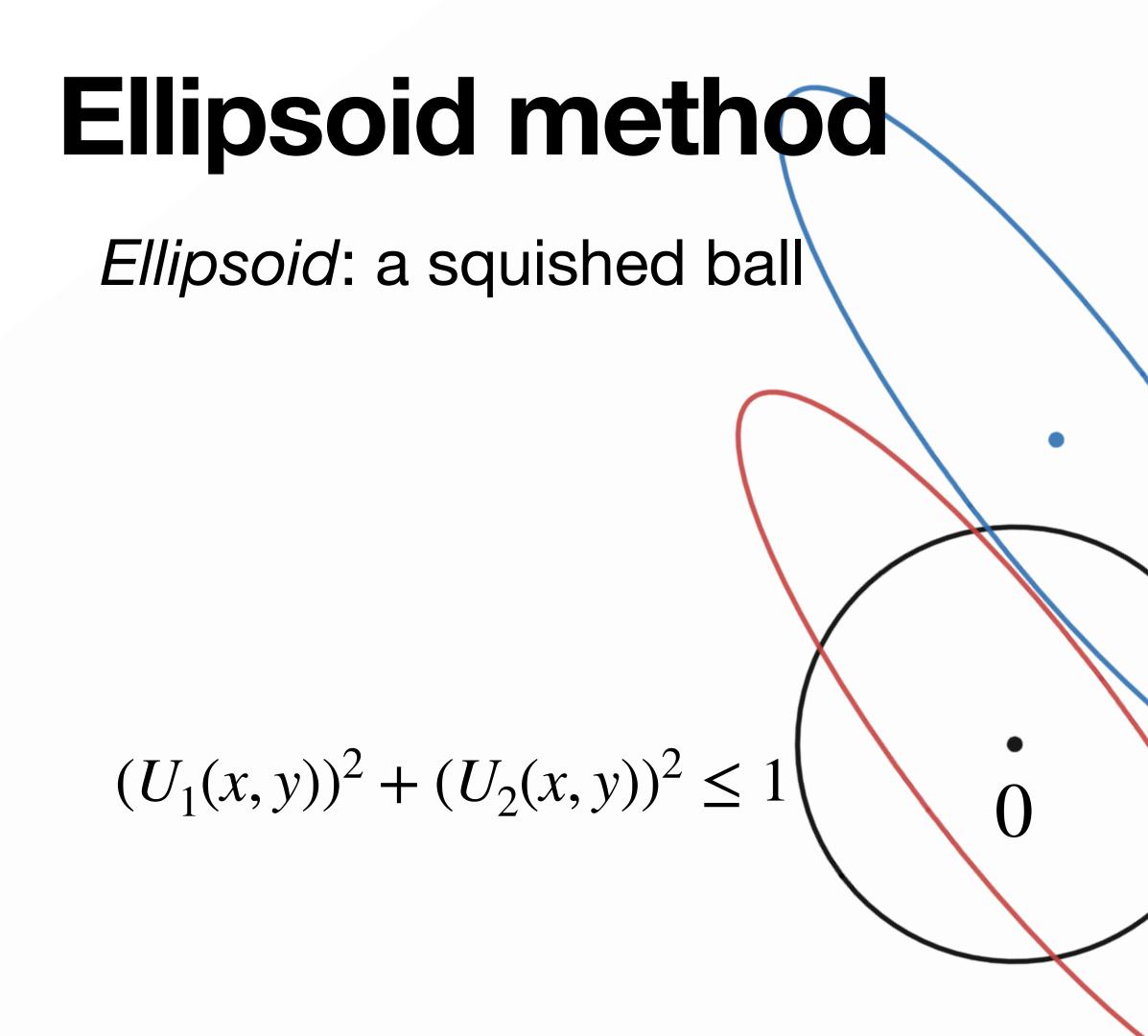


$(2(x-1))^2 + ((y-1)/2)^2 \le 1$

Ratio of area of ellipsoid to sphere:

 $(2x)^2 + (y/2)^2 \le 1$

٠



 $(2U_1(x,y))^2 + (U_2(x,y)/2)^2 \le 1$

Let U^{-1} be the linear transformation corresponding to a rotation.

$(2(U_1(x,y)-1))^2 + ((U_2(x,y)-1)/2)^2 \le 1$

Ratio of area of ellipsoid to sphere:

The desired solution is bounded

Fact: If the solution is finite, then its magnitude is at most 20(poly(input length))

Pf: If finite, the solution occurs at a vertex. Since every vertex satisfies Bx = d, for some B, d, we have $x = B^{-1}d$, and the size of coefficients of B^{-1} are polynomially related to the size of coefficients of A.

Fact: If there is finite solution, then volume of feasible region (i.e. polytope) is at least $2^{-O(poly(input length))}$.

Pf sketch: The smallest angle that can be generated is 2-O(poly(input length))

Ellipsoid method

Is there *x* maximize $c^{T}x$ with subject to $c^{\mathsf{T}}x \geq d$ $Ax \leq b$ $Ax \leq b$ $x \ge 0$ $x \ge 0$

Claim: If we can find x inside polytope in poly time, we can use binary search to find the best value of d in poly time!

Fact: If the solution is finite, then its magnitude is at most 2^{O(poly(input length))}

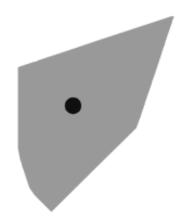
Fact: If there is finite solution, then volume of feasible region (i.e. polytope) is at least $2^{-O(\text{poly}(\text{input length}))}$

Consequence: We know $-T \leq c^{\mathsf{T}} x \leq T$, where $T < 2^{O(\text{poly}(\text{input length}))}$

Using binary search

y = T

Check polytope is non-empty y = T



y = T

 $y \le 0$

Find point

y = T

 $y \le 0$

y = -T

 $y \le 0$

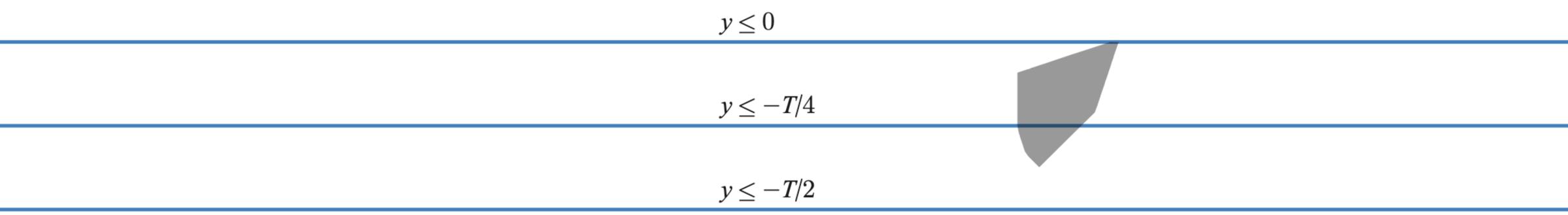
 $y \leq -2$

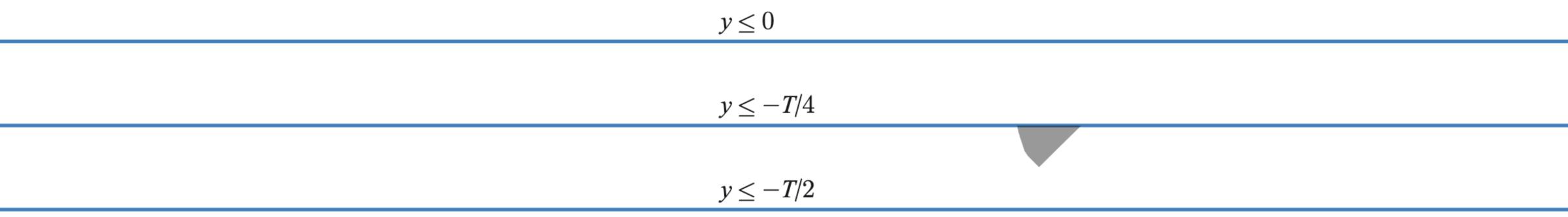
$\boldsymbol{\tau}$	י/	ົ
1	Ι	4

Find point: polytope is empty!

 $y \leq 0$

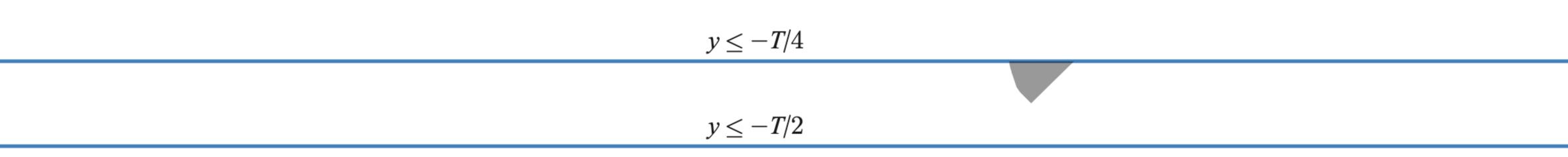
 $y \leq -T/2$





Find point

$y \leq 0$
$y \leq -T$
$y \leq -2$



$y \leq -2$
$y \leq -3$
$y \leq -2$

T/4	
3 <i>T</i> /8	
T/2	

Find point: polytope is empty!

$y \leq -2$
$y \leq -3$
$y \leq -2$

- <i>T</i> /4		
-3 <i>T</i> /8		
- <i>T</i> /2		

$y \leq -3$	$y \leq -2$
	$y \leq -3$

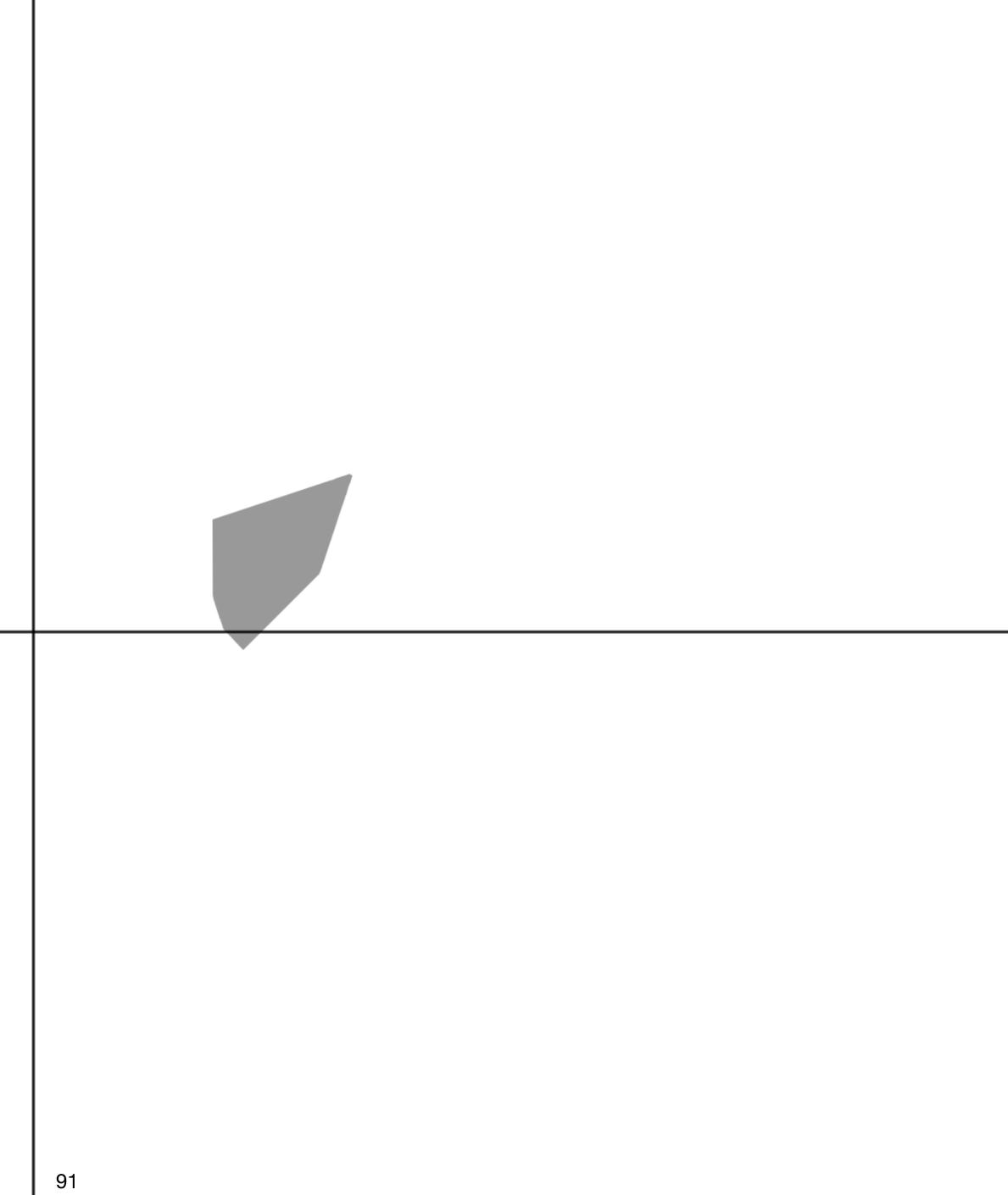
Find point

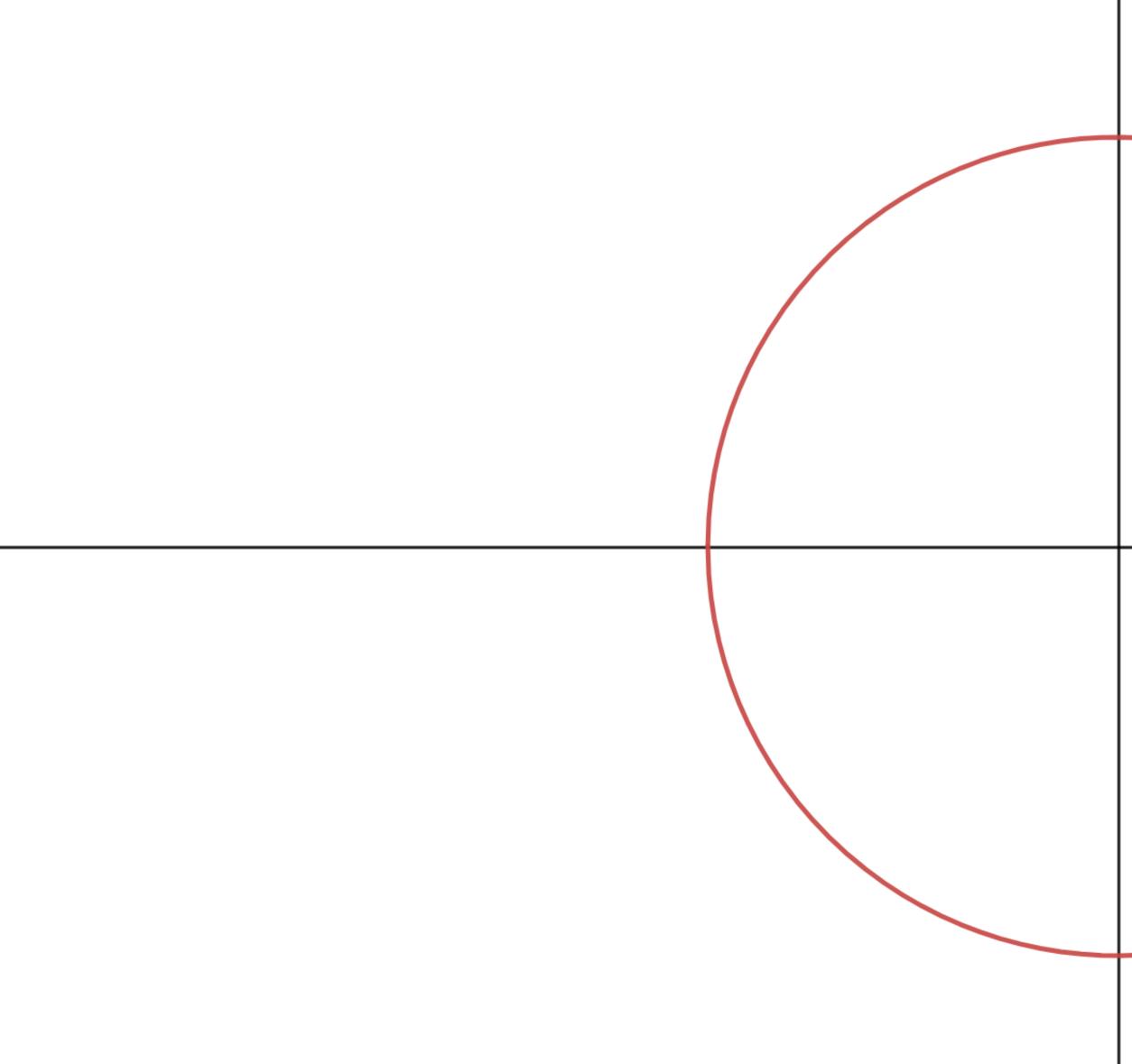
 $y \leq -T/4$ $y \leq -3T/8$

Conclusion: It is enough to give an algorithm to find a point in a polytope.

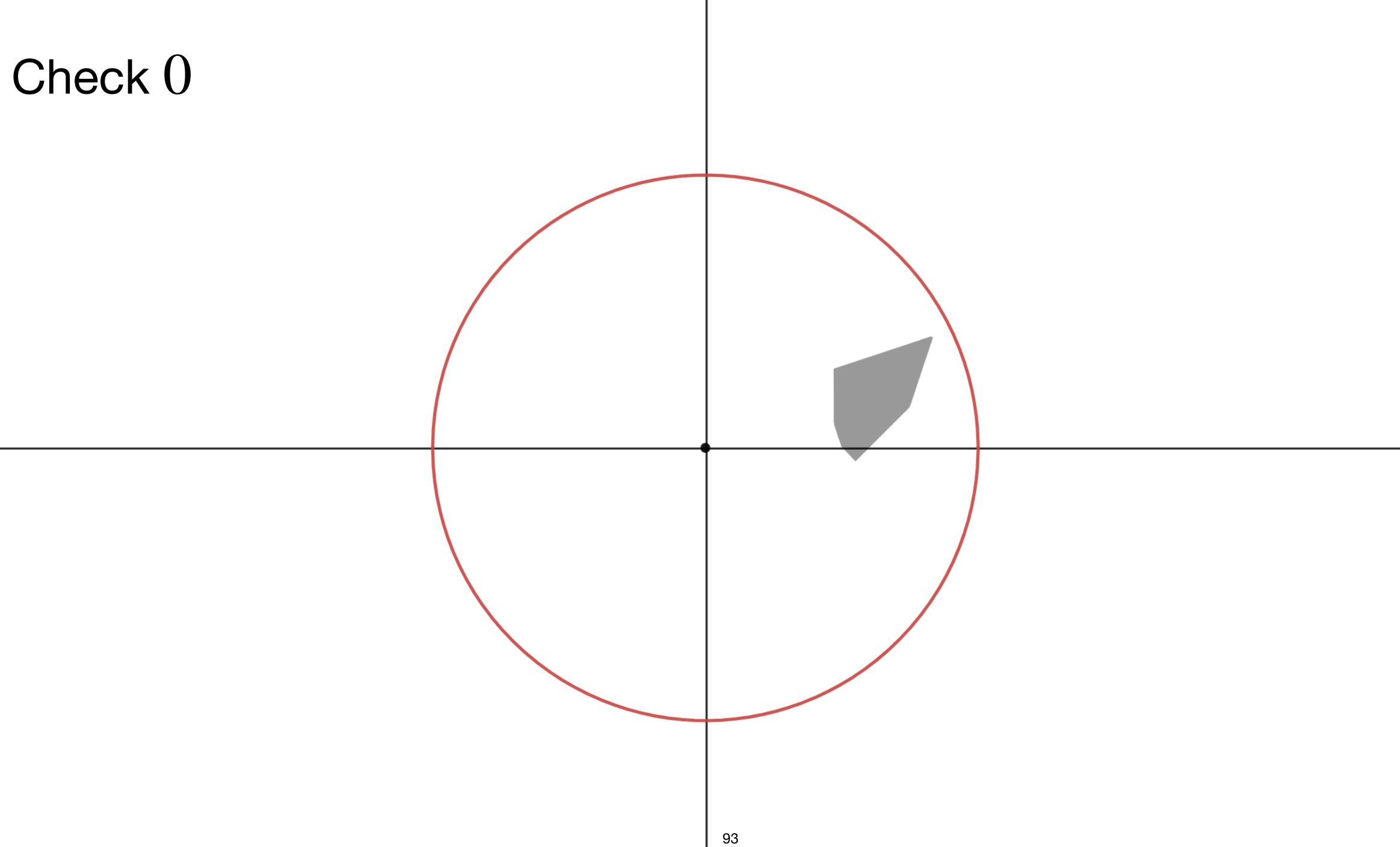
Ellipsoid algorithm for finding points in polytopes

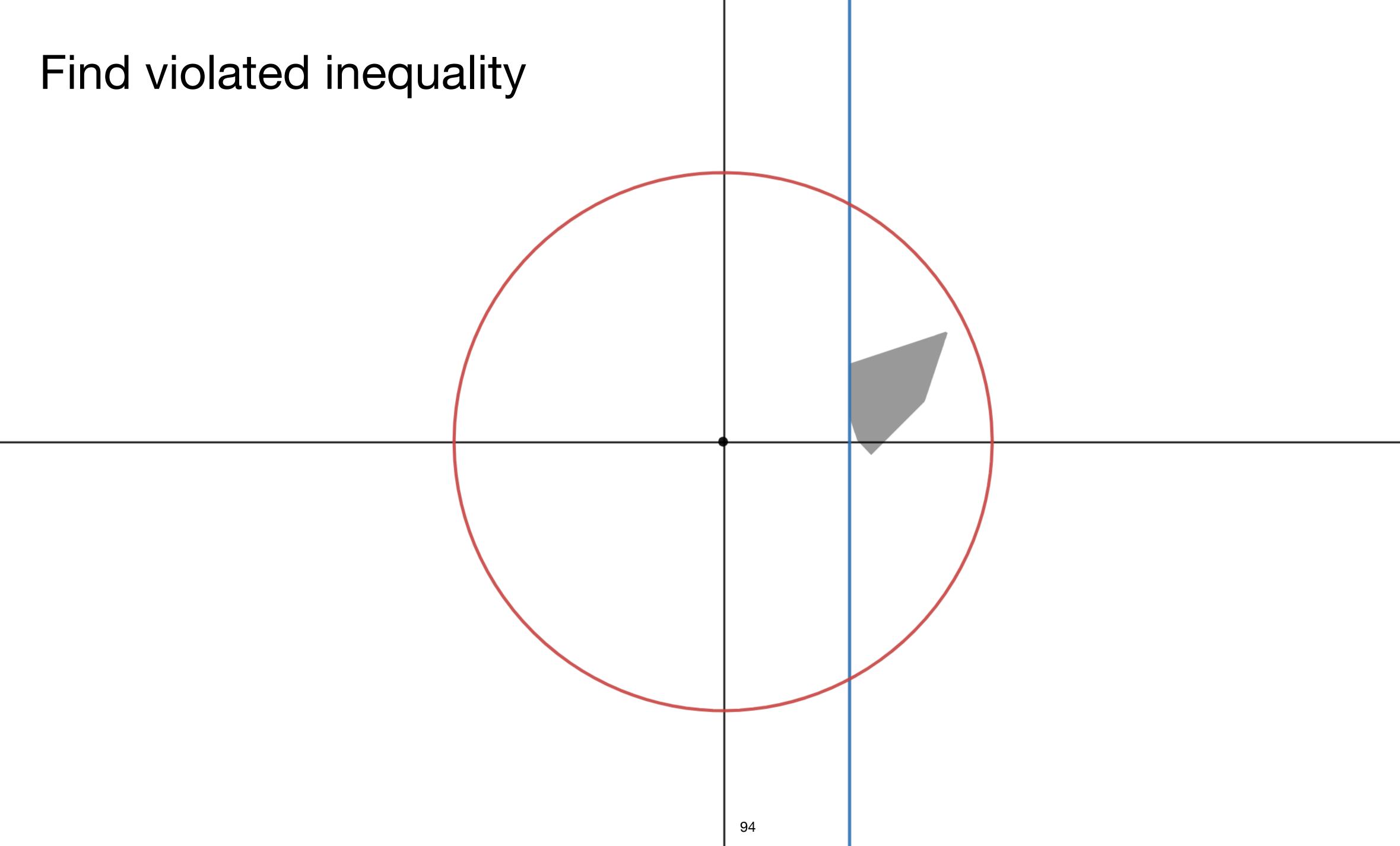
Idea: Iteratively find ellipsoids where the density of the polytope is larger and larger, until a point is found

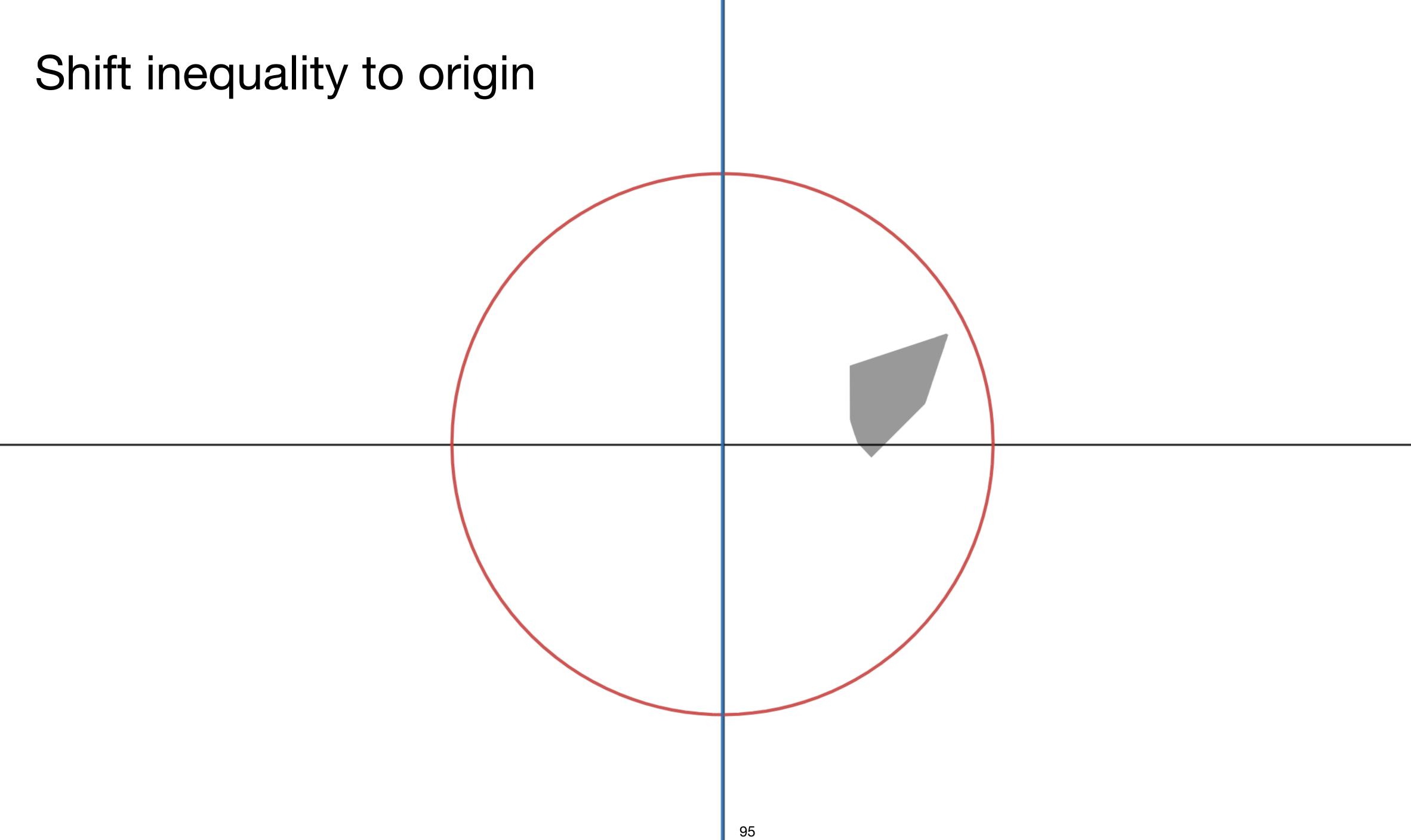




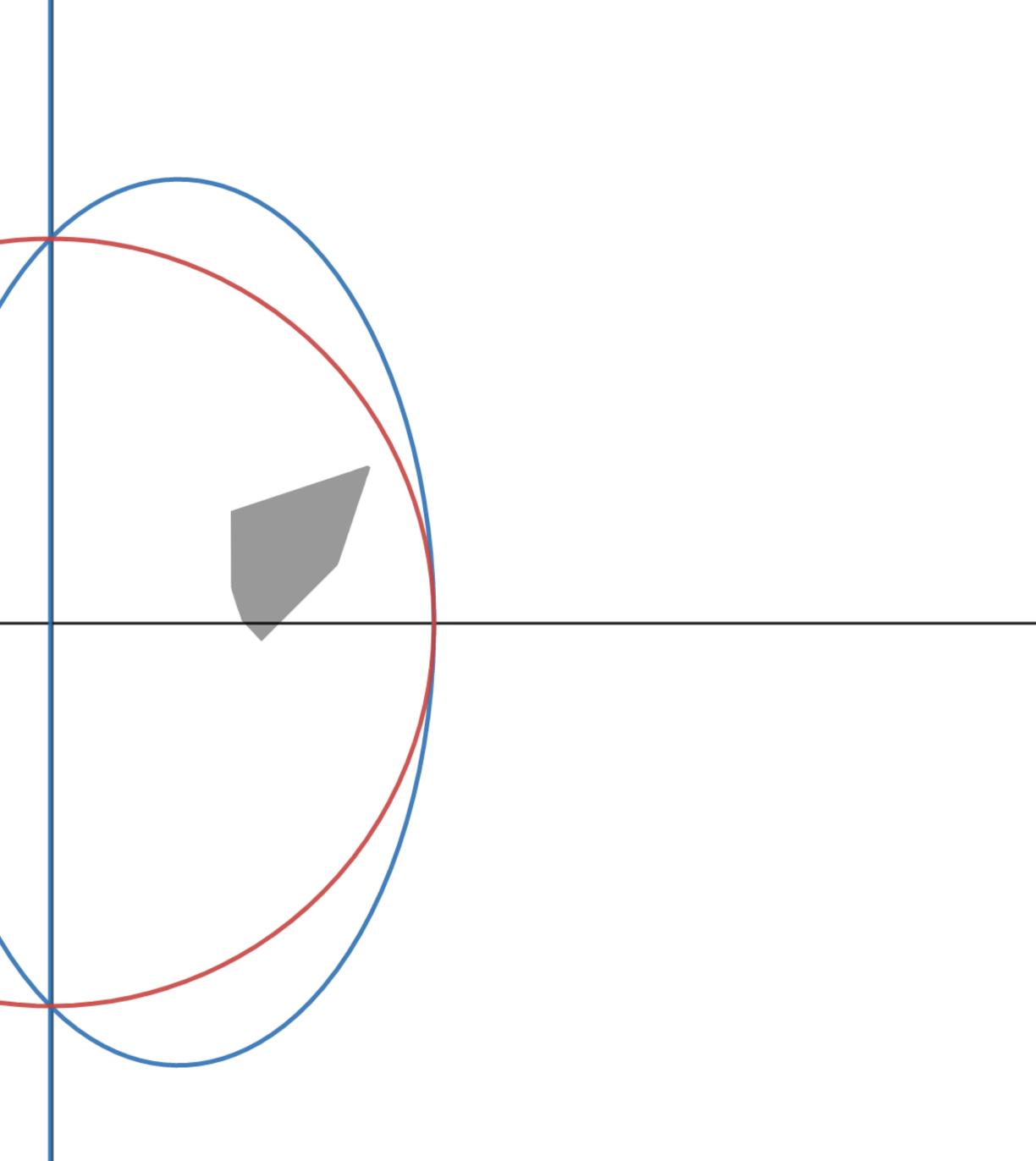
Fact: If the solution is finite, then its magnitude is at most $2^{O(poly(input length))}$.



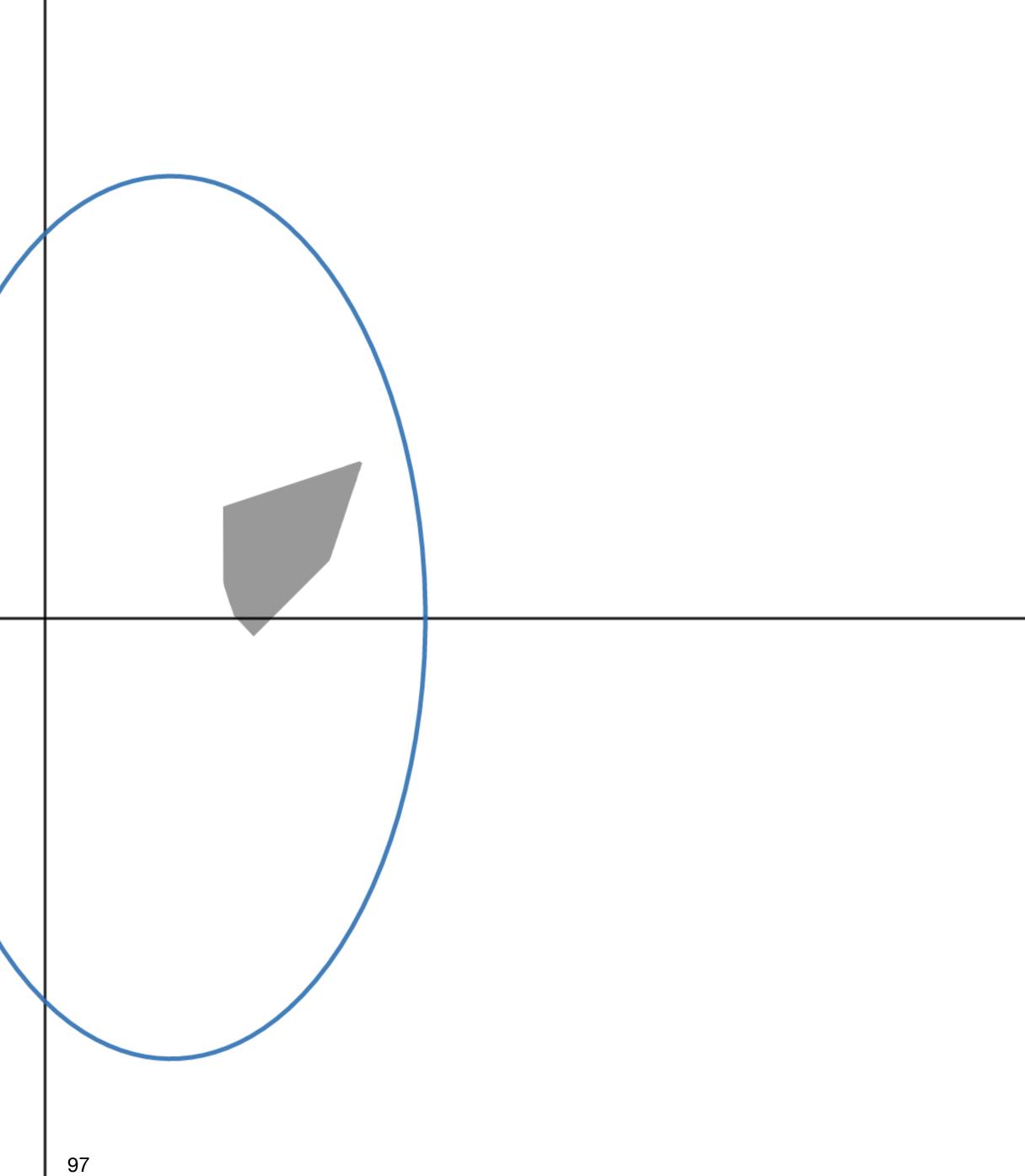


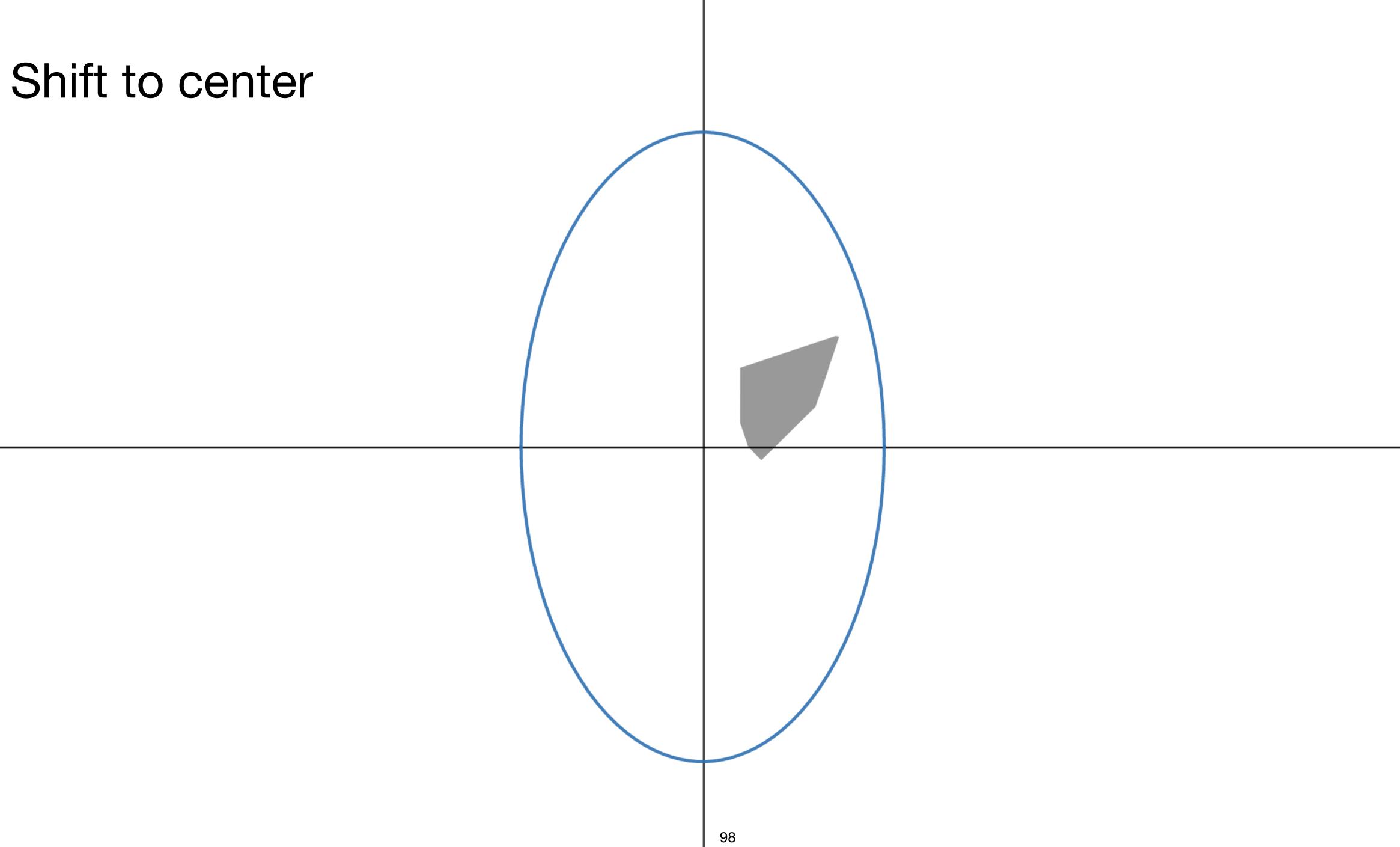


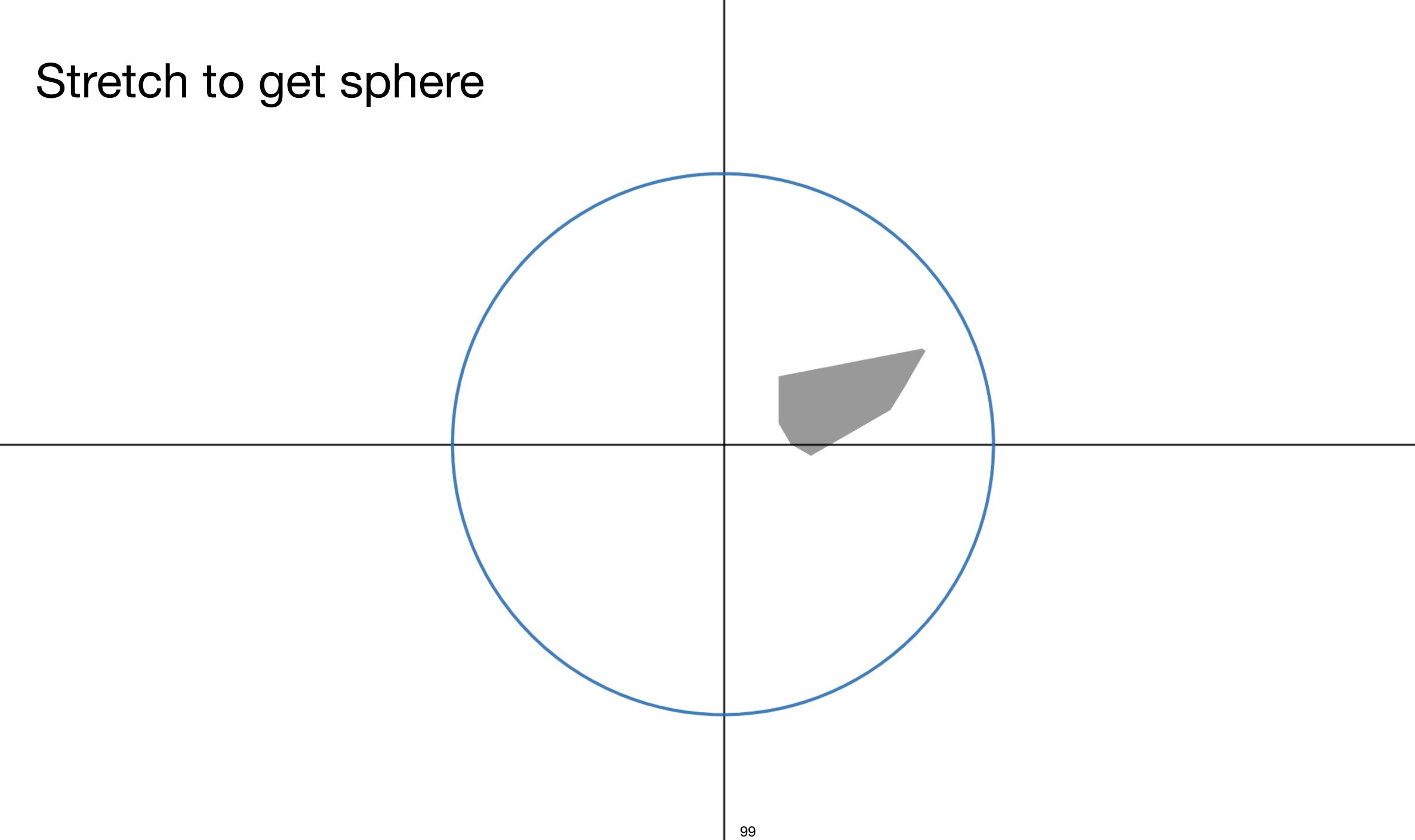
Find ellipsoid containing half-sphere

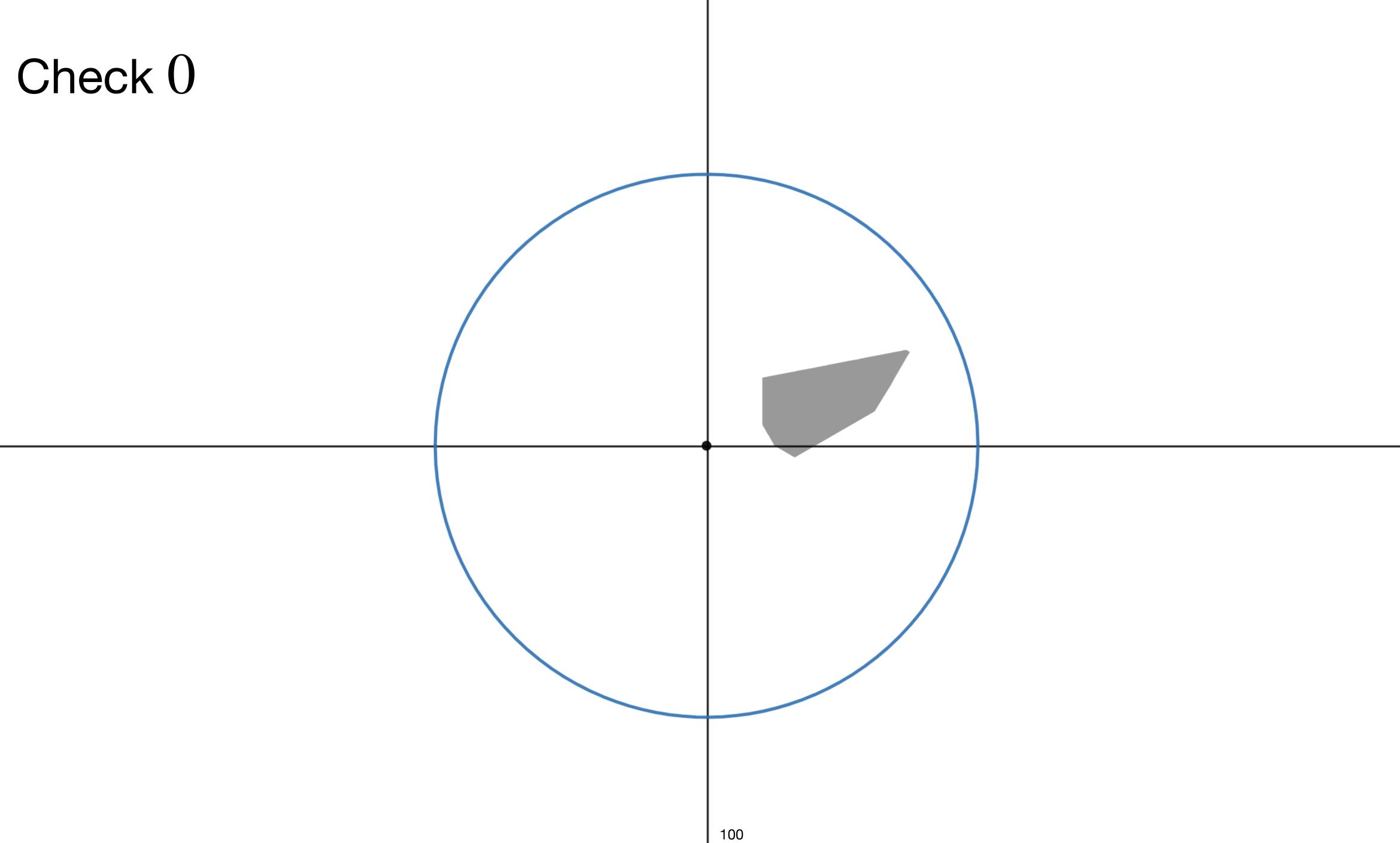


Find ellipsoid containing half-sphere

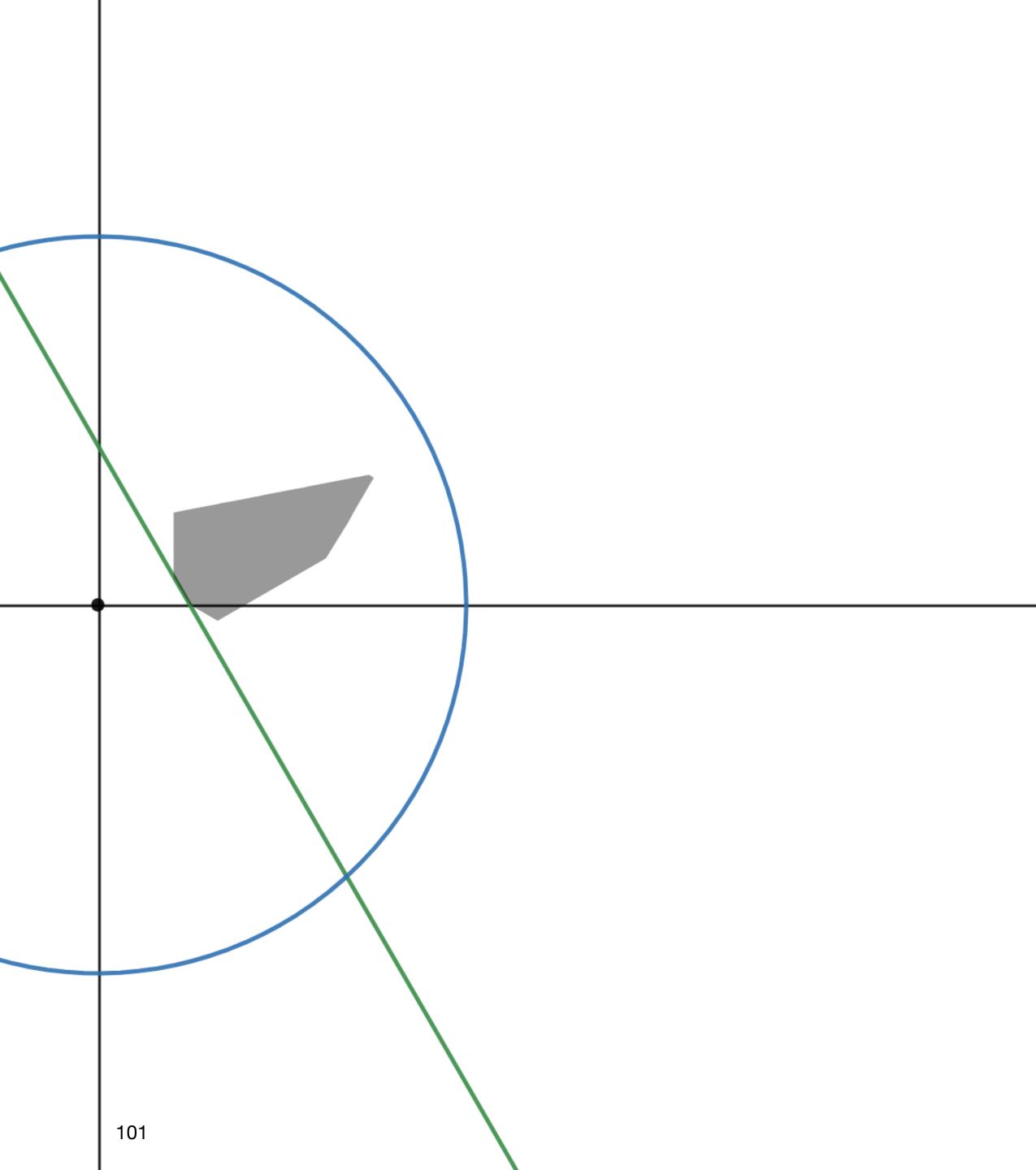




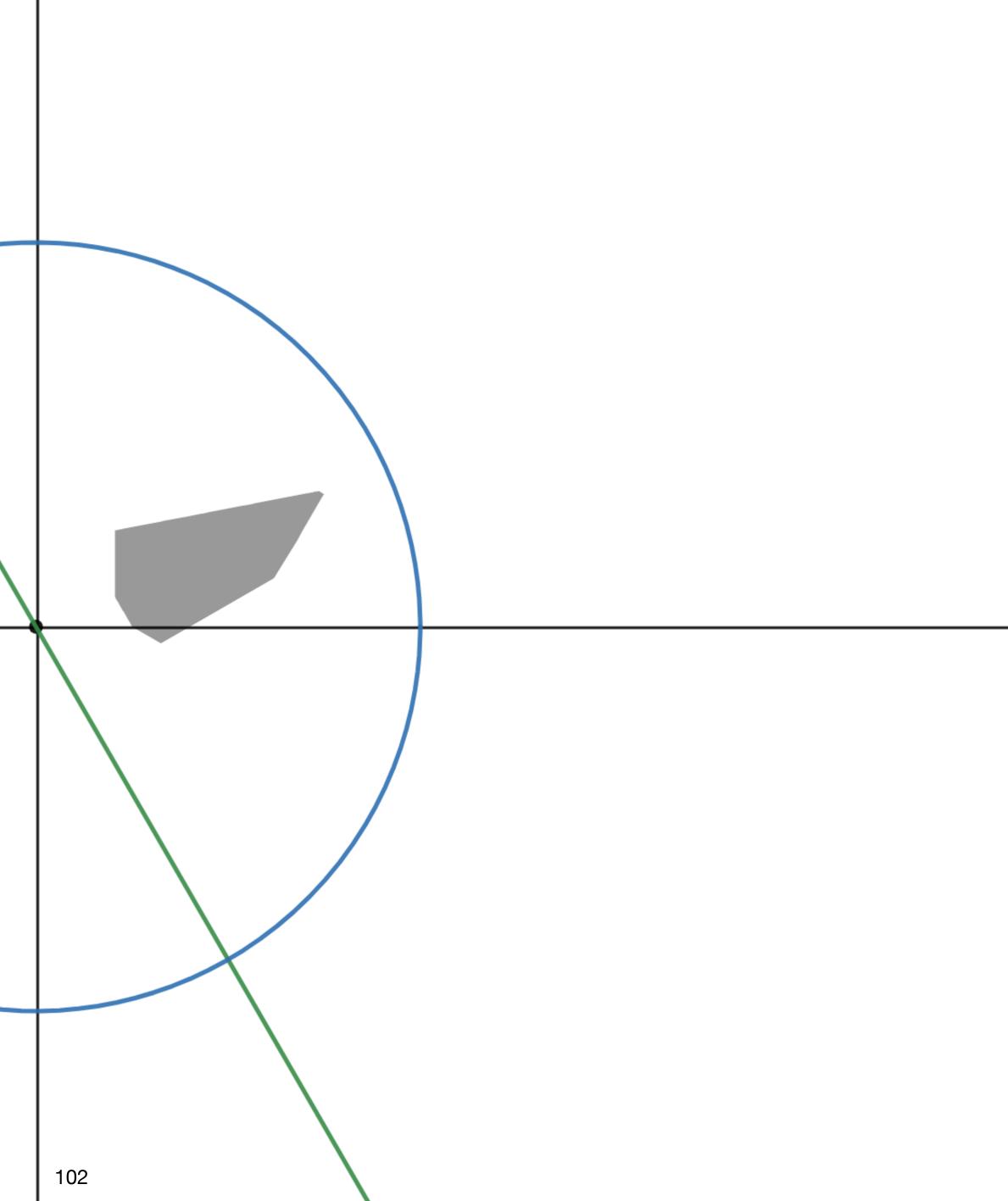




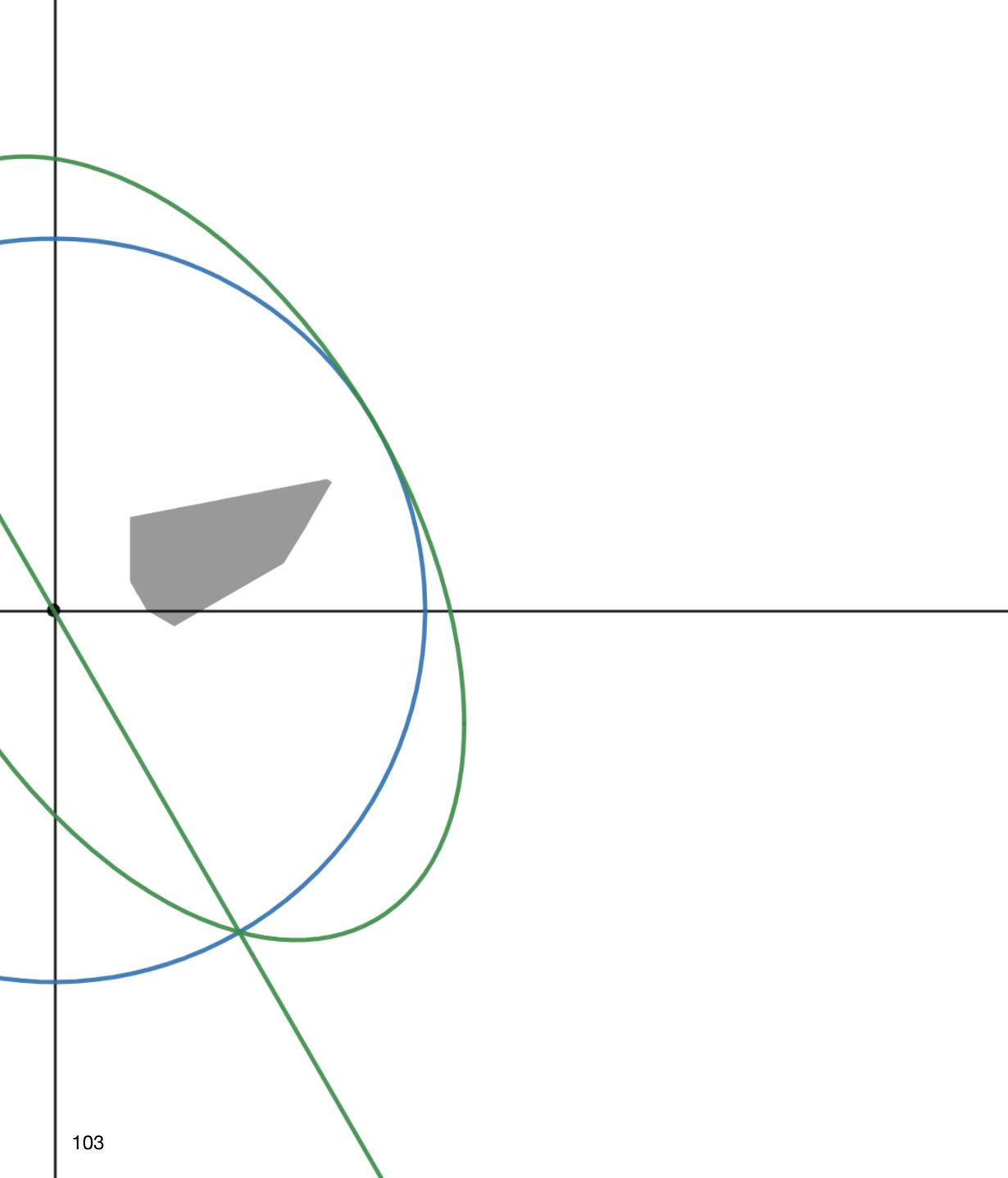
Find violated inequality



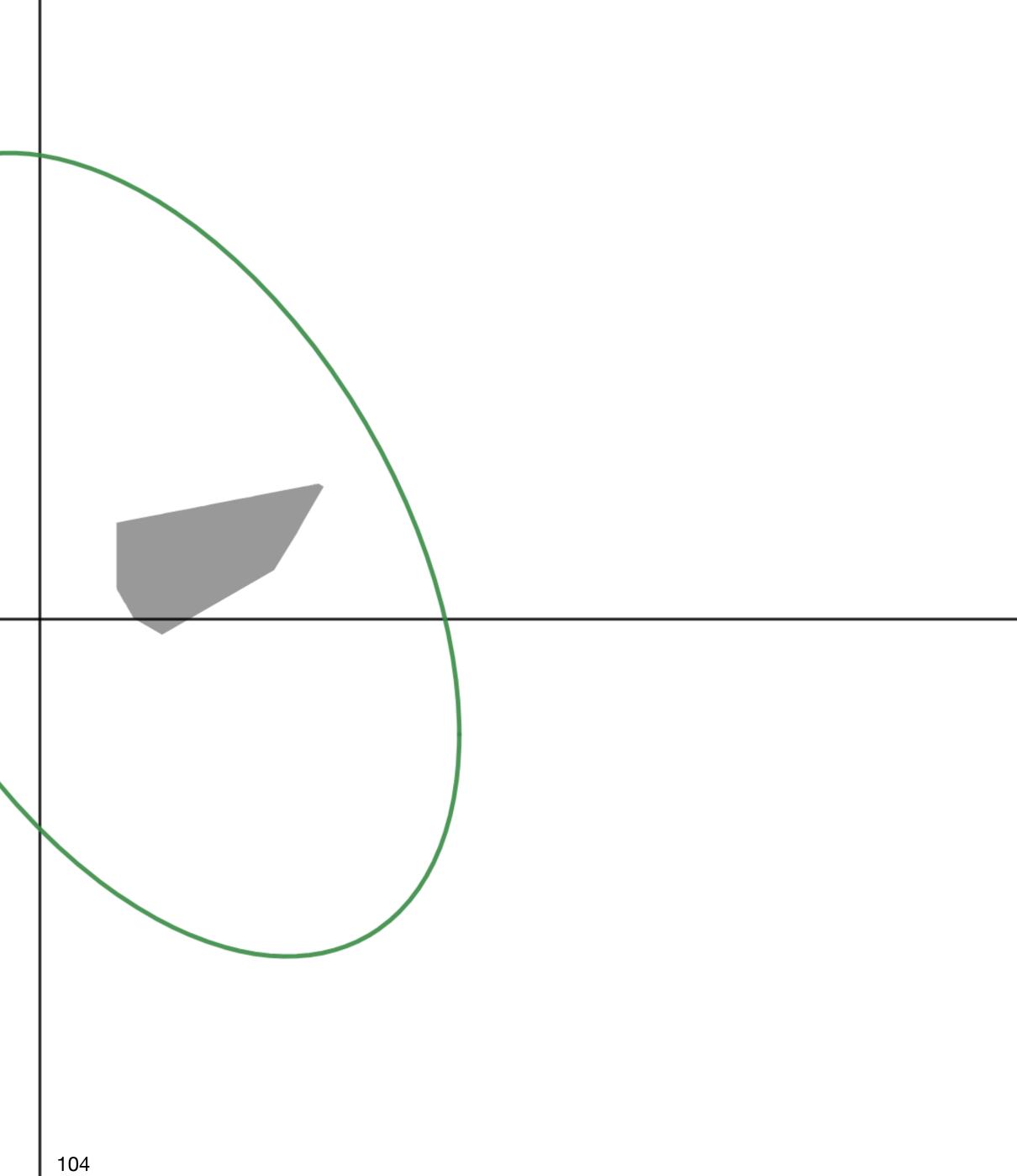
Shift inequality to origin

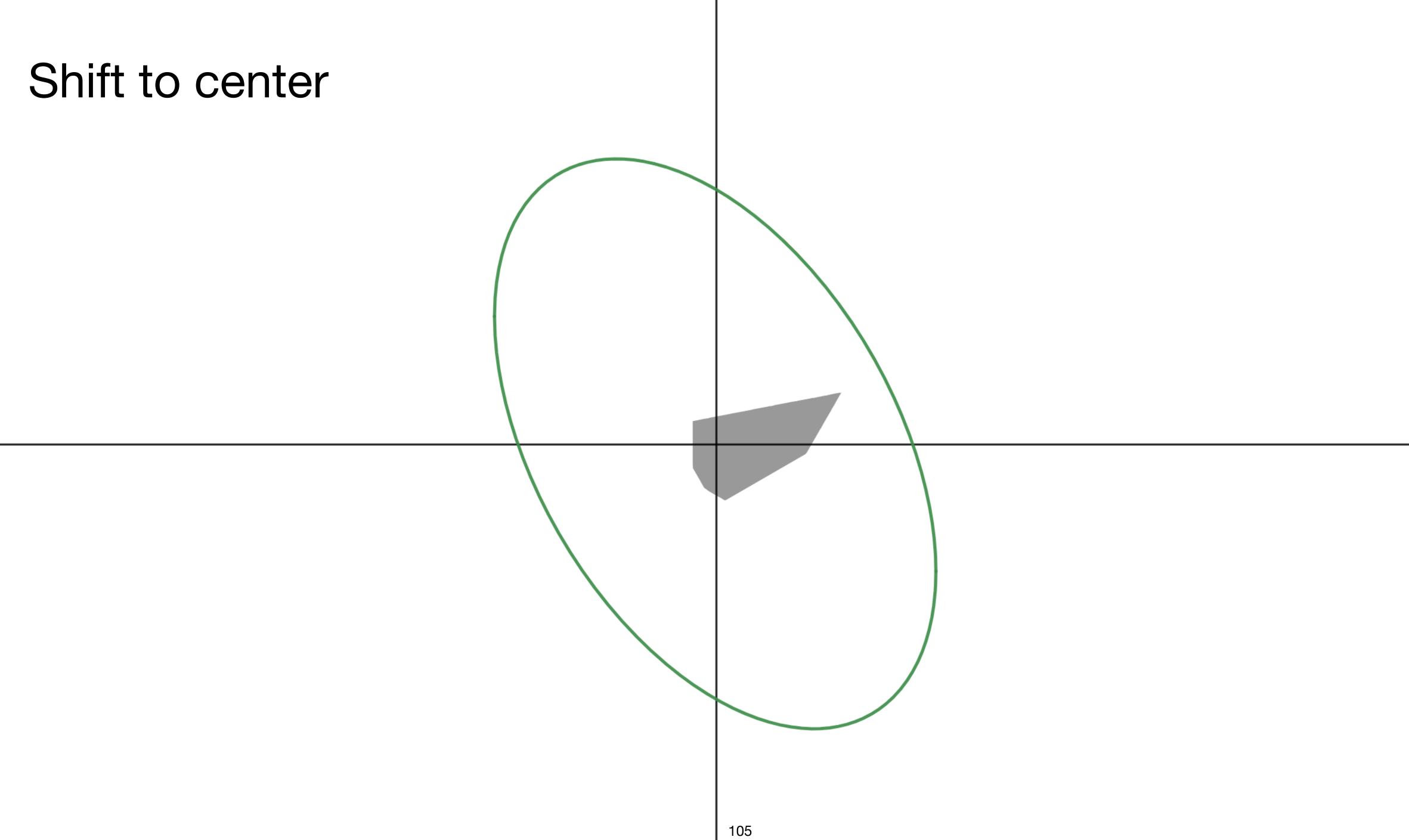


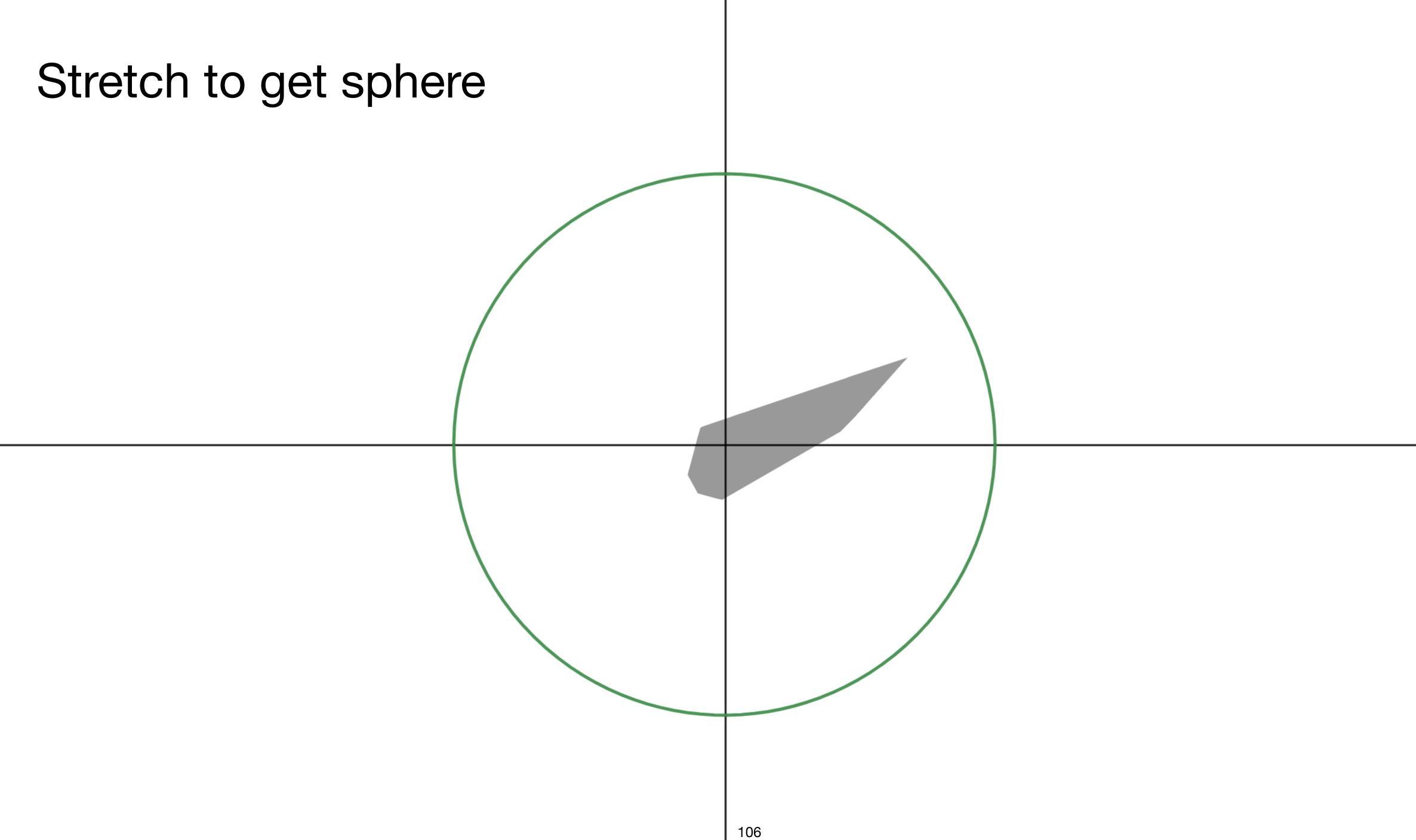
Find ellipsoid containing half-sphere

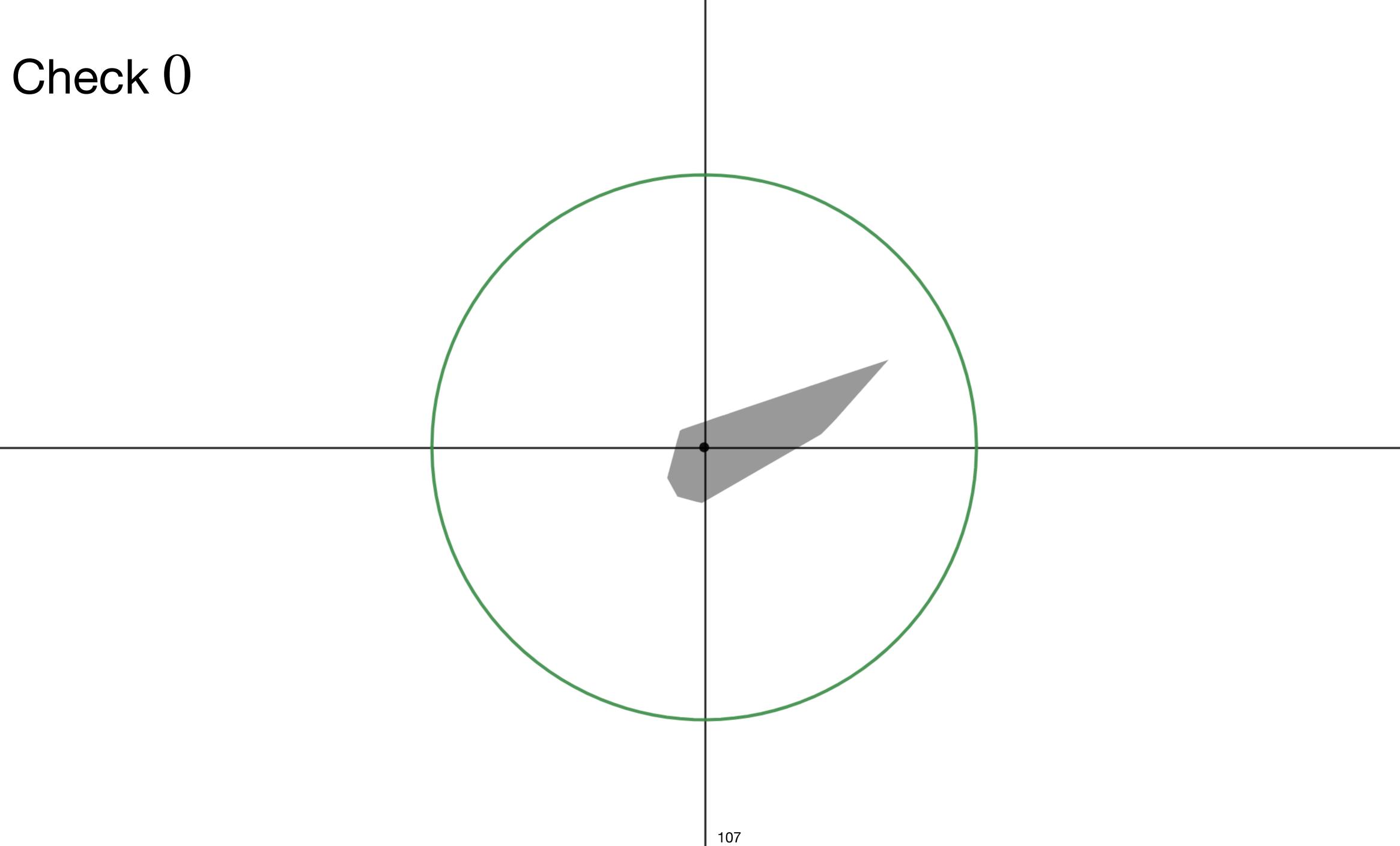


Find ellipsoid containing half-sphere









Ellipsoid method

Is there *x* with $c^{\mathsf{T}}x \geq d$ $Ax \leq b$ x > 0

- 1. Let E be circle of radius R containing polytope P. 2. If $0 \in P$, output 0.
- 3. Otherwise half-circle containing P, and ellipsoid E'containing half-circle.
- 4. Scale and shift E' to get E, and find element of P
 - using new E.

Key Lemma: $vol(E')/vol(E) \leq e^{\frac{-1}{2(n+1)}}$

Corollary: $vol(P)/vol(E') \ge e^{\frac{1}{2(n+1)}} \cdot vol(P)/vol(E)$

Algorithm to find element of non-empty P:

- Corollary: After t rounds, $\operatorname{vol}(P)/\operatorname{vol}(E') \ge e^{\frac{t}{2(n+1)}} \cdot \operatorname{vol}(P)/\operatorname{vol}(E)$
- **Corollary:** The algorithm must terminate in poly(input length) steps.

$$E: \sum_{i} x_i^2 \le 1$$

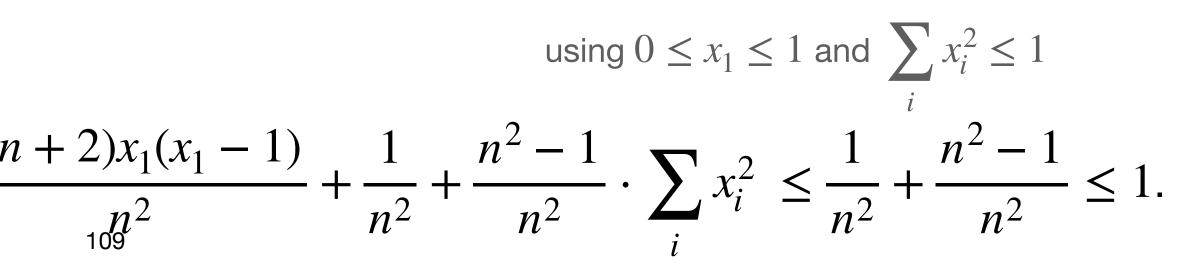
$$\frac{E': \text{ ellipsoid containing right half-ball}}{\left(\frac{n+1}{n}\right)^2 \left(x_1 - \frac{1}{n+1}\right)^2 + \frac{n^2 - 1}{n^2} \cdot \sum_{i>2} x_i^2 \leq \frac{1}{n^2} + \frac{1}{n^2} \cdot \sum_{i>2} x_i^2 \leq \frac{1}{n^2} + \frac{1}{n^2} \cdot \sum_{i>2} x_i^2 \leq \frac{1}{n^2} \cdot \frac{1}{n^2} + \frac{1}{n^2} \cdot \frac{1}{n$$

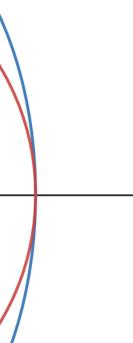
Claim: E' contains right half-ball.

If
$$x \in E$$
, $x_1 \ge 0$, then
 $\left(\frac{n+1}{n}\right)^2 \left(x_1 - \frac{1}{n+1}\right)^2 + \frac{n^2 - 1}{n^2} \cdot \sum_{i>2} x_i^2$
 $= \left(\frac{(n+1)x_1 - 1}{n}\right)^2 + \frac{n^2 - 1}{n^2} \cdot \sum_{i>2} x_i^2$

$$= \frac{(n^2 + 2n + 1)x_1^2 - 2(n + 1)x_1 + 1}{n^2} + \frac{n^2 - 1}{n^2} \cdot \sum_{i>2} x_i^2$$

= $\frac{(2n + 2)x_1^2 - (2n + 2)x_1}{n^2} + \frac{1}{n^2} + \frac{n^2 - 1}{n^2} \cdot \sum_i x_i^2 = \frac{(2n + 2)x_1^2}{n^2} + \frac{1}{n^2} + \frac{n^2 - 1}{n^2} \cdot \sum_i x_i^2 = \frac{(2n + 2)x_1^2}{n^2} + \frac{1}{n^2} +$





$$E: \sum_{i} x_i^2 \le 1$$

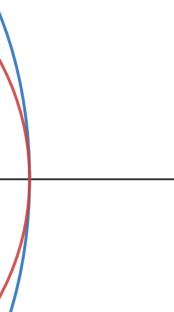
Claim:
$$\operatorname{vol}(E')/\operatorname{vol}(E) \le e^{\frac{-1}{2(n+1)}}$$

$$E: \sum_{i} x_{i}^{2} \le 1$$

$$\left(\frac{n+1}{n}\right)^{2} \left(x_{1} - \frac{1}{n+1}\right)^{2} + \frac{n^{2} - 1}{n^{2}} \cdot \sum_{i>2} x_{i}^{2} \le 1$$

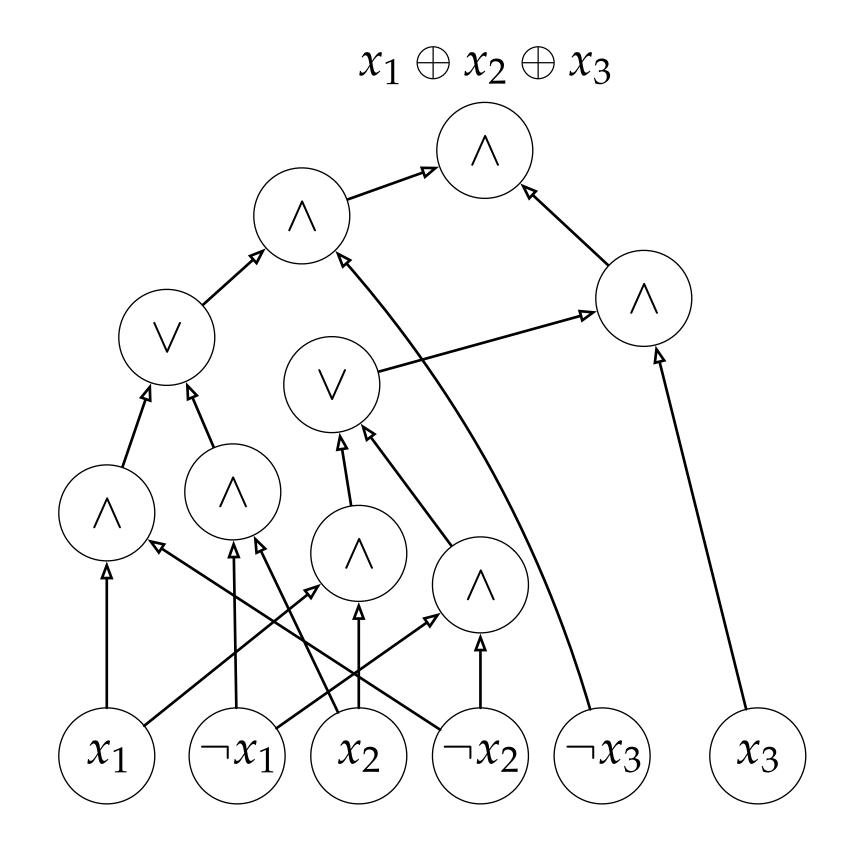
$$\operatorname{vol}(E')/\operatorname{vol}(E)$$

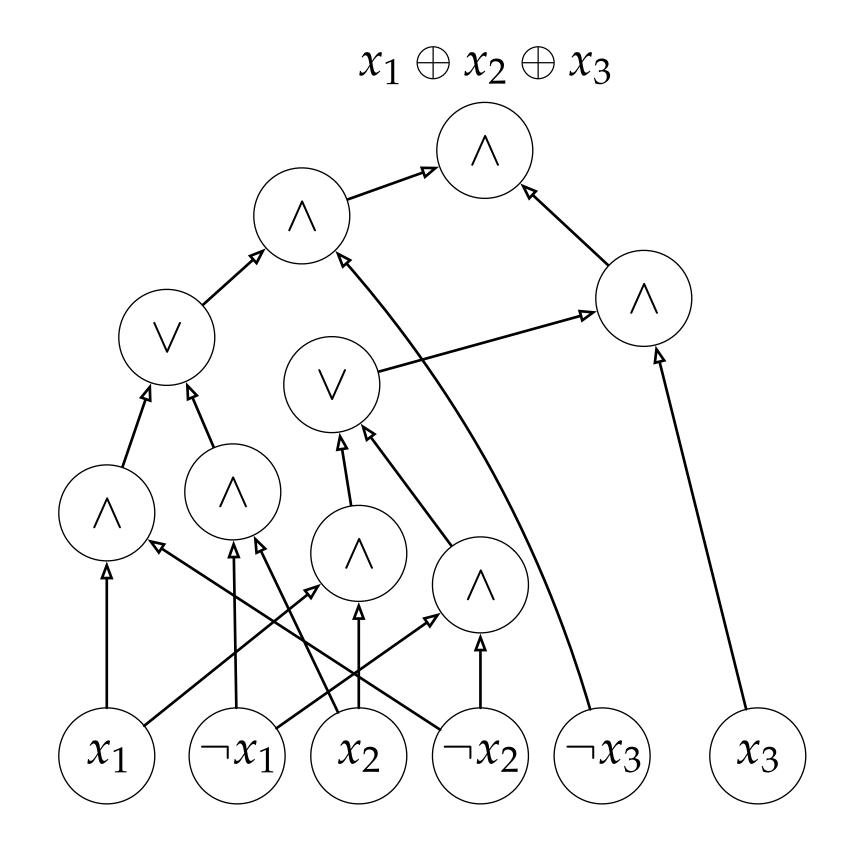
$$= \frac{n}{n+1} \cdot \left(\sqrt{\frac{n^{2}}{n^{2} - 1}}\right)^{n-1} \underset{\text{using } 1 + z \le e^{z}}{= \left(1 - \frac{1}{n+1}\right) \cdot \left(1 + \frac{1}{n^{2} - 1}\right)^{(n-1)/2}} \le e^{-\frac{1}{n+1}} \cdot e^{\frac{(n-1)/2}{n^{2} - 1}} = e^{-\frac{1}{n+1}} \cdot e^{\frac{1}{2(n+1)}} = e^{\frac{-1}{2(n+1)}}$$



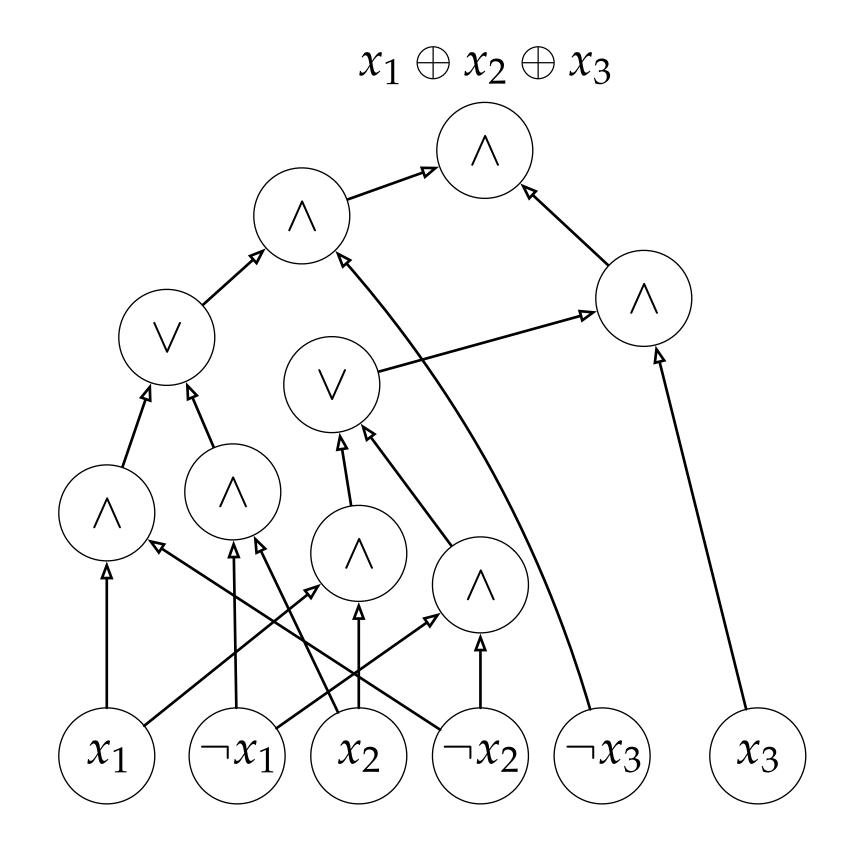
Why is linear programming so powerful?

In a sense, every algorithm can be expressed as linear program!

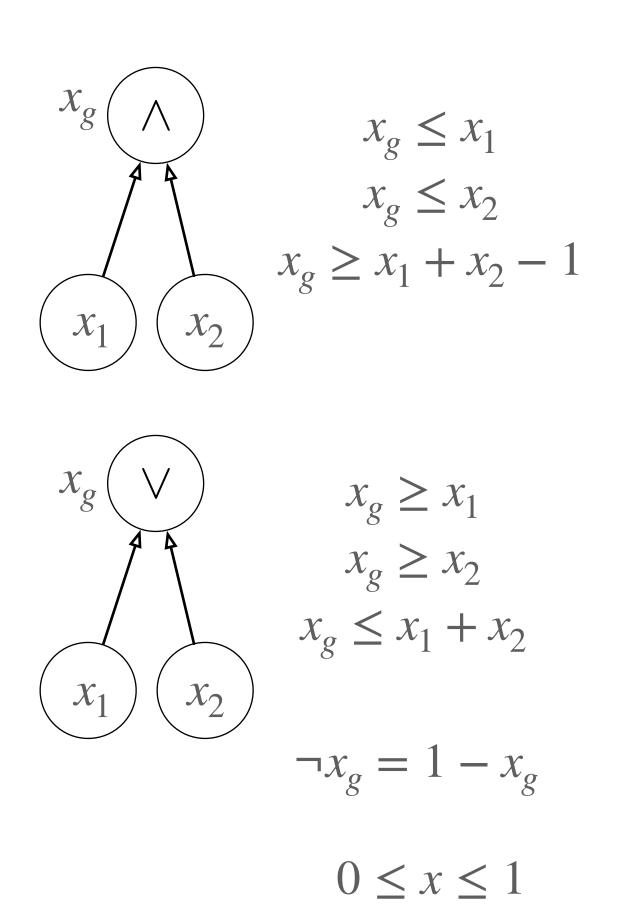


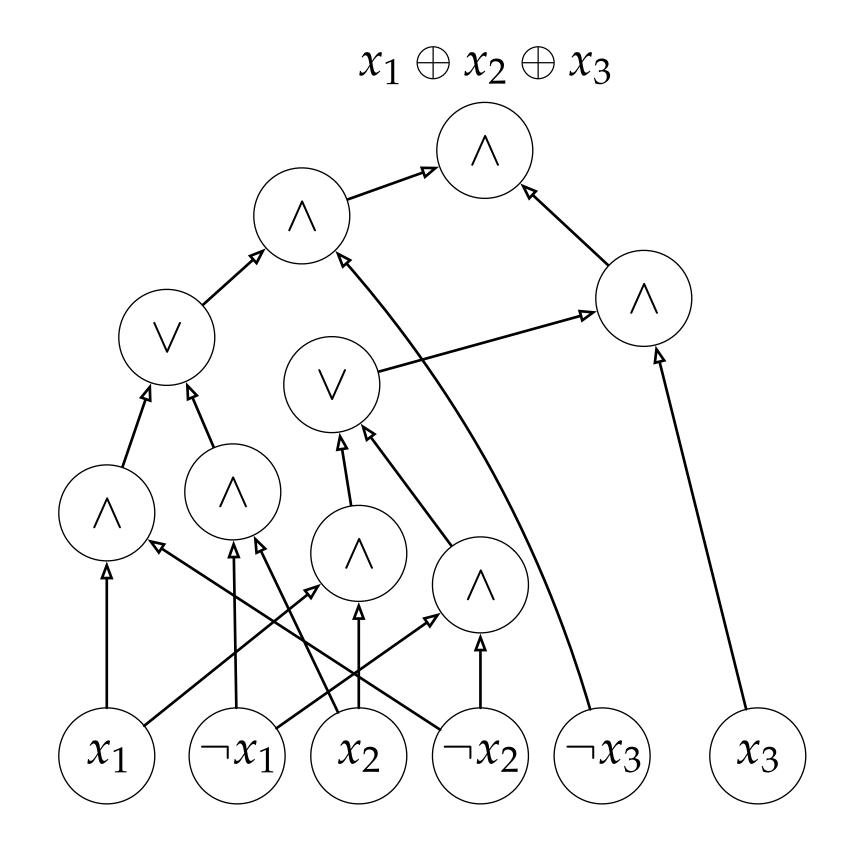


Fact: If $f: \{0,1\}^n \rightarrow \{0,1\}$ can be computed in time T, then it can be computed by a circuit of size $O(T \log T)$.

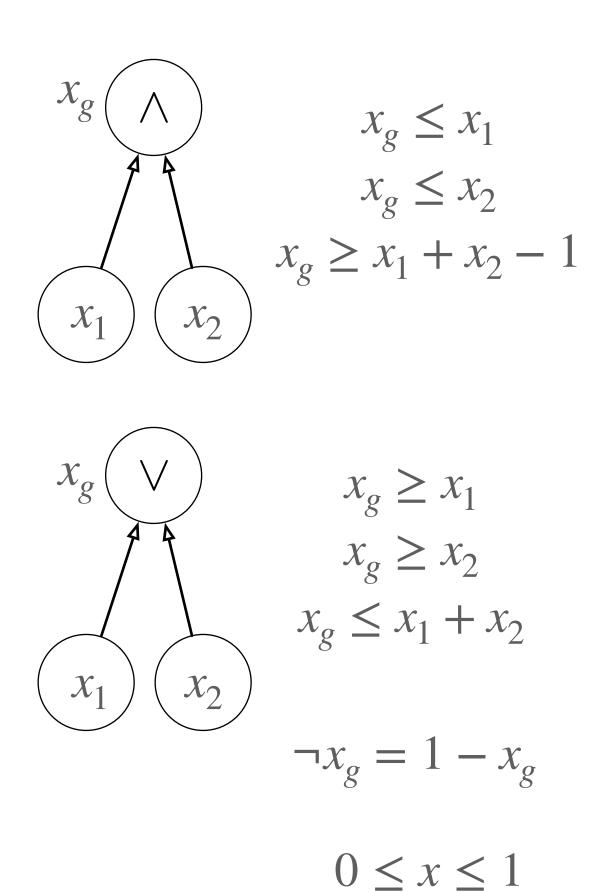


Fact: If $f: \{0,1\}^n \rightarrow \{0,1\}$ can be computed in time T, then it can be computed by a circuit of size $O(T \log T)$.

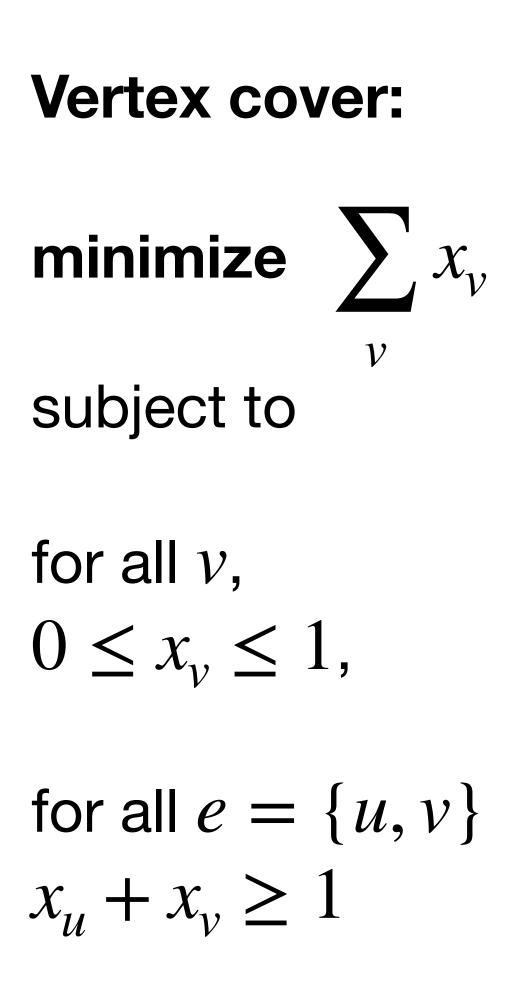




Fact: If $f: \{0,1\}^n \rightarrow \{0,1\}$ can be computed in time T, then it can be computed by a circuit of size $O(T \log T)$.



Computing f is equivalent to finding *x* satisfying these constraints!

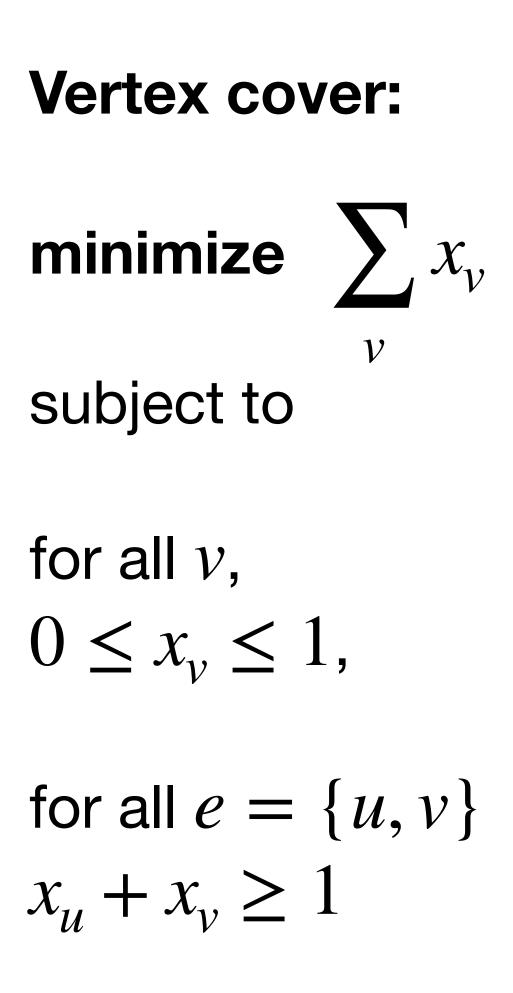


Claim: Any feasible solution that is a vertex of the polytope must have $x_v \in \{0, 1/2, 1\}.$ Pf: Consider the solutions: $y_{v} = \begin{cases} x_{v} & \text{if } x_{v} \in \{0, 1 \\ x_{v} + \epsilon & \text{if } x_{v} > 1/2 \\ x_{v} - \epsilon & \text{otherwise.} \end{cases}$ for all $e = \{u, v\}$ $x_u + x_v \ge 1$ $z_v = \begin{cases} x_v & \text{if } x_v \in \{0, 1 \\ x_v - \epsilon & \text{if } x_v > 1/2 \\ x_v + \epsilon & \text{otherwise.} \end{cases}$

$$x_v \in \{0, 1/2, 1\}$$

$$x_v \in \{0, 1/2, 1\}$$

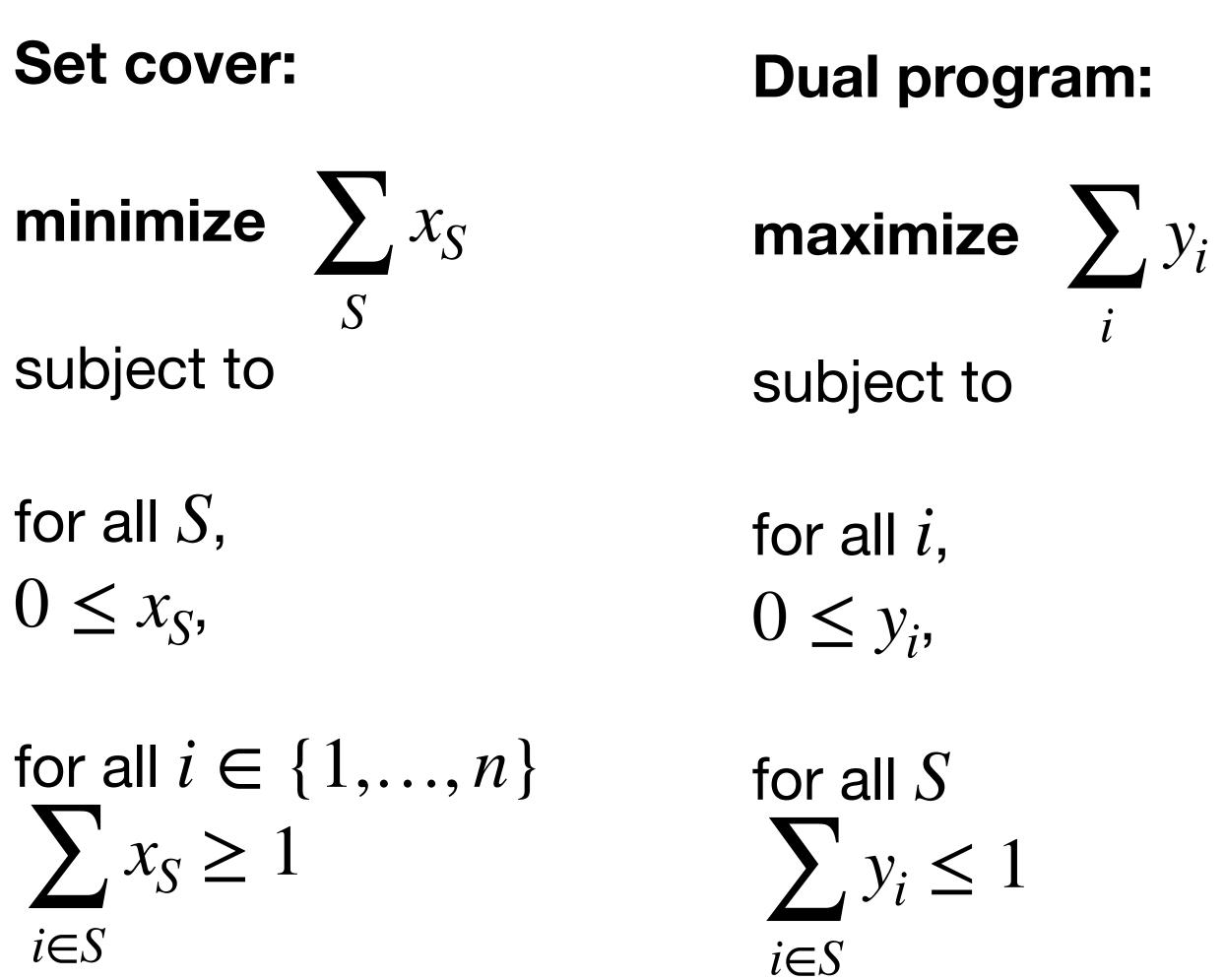
y, z are valid solutions to the program. If $x_v \notin \{0, 1/2, 1\}$, then $y \neq z$, yet x = (y + z)/2, so *x* cannot be a vertex.



Claim: Any feasible solution that is a vertex of the polytope must have $x_v \in \{0, 1/2, 1\}.$

Consequence: Let *x* be a solution that is a vertex of the polytope. If we pick the set of vertices

Let $S = \{v : x_v > 0\}$, this is a valid vertex cover that is at most twice as large as the best one!



Dual program: maximize $\sum_{i} y_{i}$ subject to for all *i*, $0 \leq y_i$, for all S $\sum y_i \le 1$ $\overline{i \in S}$

Recall greedy algorithm:

In each step, pick the set that covers the most remaining elements.

Let $z_i = 1/k$, if *i* was covered in a group of k elements. Let $H_r = 1 + 1/2 + \ldots + 1/r$.

Claim: z/H_n is a valid solution to dual. Pf: Without loss of generality, suppose $S = \{1, 2, ..., k\}$, and the elements are covered in order. Then we see: $\sum z_i$ $i \in S$ $\leq (1/k + 1/(k - 1) + ... + 1)$ $\leq H_n$.

Dual program: maximize $\sum_{i} y_{i}$ subject to for all *i*, $0 \leq y_i$, for all S $\sum y_i \le 1$ $\overline{i \in S}$

Recall greedy algorithm:

In each step, pick the set that covers the most remaining elements.

Let $z_i = 1/k$, if *i* was covered in a group of k elements. Let $H_r = 1 + 1/2 + \ldots + 1/r$.

Claim: z/H_n is a valid solution to dual.

Consequence: The dual has value at least the size of greedy solution $/H_n$. Since $H_n \leq O(\log n)$, the greedy is within $O(\log n)$ of the optimal solution.

