Linear Programming

A really very extremely big hammer



Given: a polytope
Find: the lowest point in the polytope
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Given: a polytope
Find: the lowest point in the polytope

maximize 7, + 22,
subject to

221 — 2+ 33 L 1
—Z1 T2 — 23 <5

We have fast
algorithms for this!




Linear Algebra primer

a,x € R" think of them as column vectors.
alx=ax +...+ayx,

The set of x satisfying a'x = 0 is a hyperplane.



alx =0










Given: a polytope
Find: the lowest point in the polytope
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Given: a polytope \ Y

L
Find: the lowest point in the polytope \f”’ ?ﬁ g
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3 \g




Linear Algebra primer

a,x € R" think of them as column vectors.

alx=ax +...+ayx,

Ax
ArX

A x

m
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Given: a polytope \ A\

L
Find: the lowest point in the polytope \f"’ ?ﬁ g
/
*»
7 z <
N Y

N\l \N\
3 >

maximize c'x
subject to
Ax < b

Ax < b means
(Ax); < b,
for all 1




Standard form

maximize c'x
subject to
Ax < b

x>0



Standard form maximize z, + 22,

subject to

o -1+ —253 55
maximize cx ! 0

subject to
Ax < b

x>0
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Standard form maximize z, + 22,

subject to

o -1+ —23 <5
maximize cx ! 2

subject to
Ax < b l

x>0 .
maximize (xlaa — xl,b) T 2(x3,a o x3,b)

subject to

2(x1’a — xlab) — (362,6Z — Xz,b) T 3(x3,a — x3,b) <1
_(xl,a — xl,b) + (Xz,a — xz,b) — (x3,a - XB,b) <3
x>0
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Max Flow

Given: a flow network

maximize flow out of s
subject to

Respecting capacities and
conservation
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Max Flow

Given: a flow network

maximize flow out of s
maximize Z X

subject to €
e out of s

Respecting capacities and

conservation subject to
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Max Flow

Given: a flow network

maximize flow out of s maximize Z _Xe

subject to e Out of s

. " subject to
Respecting capacities and

conservation
for all e,

0<x, < c(e)
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Max Flow

Given: a flow network

maximize flow out of s
subject to

Respecting capacities and
conservation
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maximize Z X,

e out of s
subject to
for all e,
0<x, < c(e)

for all iIntermediate v,

Z X, = Z X,

e out of v e INTO v




maximize 2 X,

e out of s
subject to
for all e,
0<x, < c(e)

for all iIntermediate v,

Z X, = Z X,

e out of v e INTO v
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maximize c'x
subject to
Ax < b

x>0



maximize 2 X,

e out of s
subject to
for all e,
0<x, < c(e)

for all iIntermediate v,

Z X, = Z X,

e out of v e INTO v

22

maximize c'x
subject to
Ax < b

x>0

{

1 ifeoutofs
0 otherwise.



maximize 2 X,

e out of s
subject to
for all e,
0<x, < c(e)

for all iIntermediate v,

Z X, = Z X,

e out of v e INTO v

maximize c'x
subject to
Ax < b

x>0

0 otherwise.
2. ulx>r=(—uwix<-r

{1 if e out of §
1. ¢, =
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maximize 2 X,

e out of s
subject to
for all e,
0<x, < c(e)

for all iIntermediate v,

2 %= )

e out of v e INTO v

maximize c'x
subject to
Ax < b

x>0

0O otherwise.
2. ulx>r=(—u)x<-—r
3. ulx=r=u'x<r,ulx>r

{1 if e out of §
1. ¢, =
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maximize 2 X,

e out of s
subject to
for all e,
0<x, < c(e)

for all iIntermediate v,

Z X, = Z X,

e out of v e INTO v

maximize c'x
subject to
Ax < b

x>0

1 ifeoutofs
1. ¢, = ,
0O otherwise.
2. ulx>r=(—uwlx<-—-r
ulx=r=ux<rulx>r
4. maximize c'x = minimize (—c¢)'x

&0
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Shortest paths

Given: a directed graph

Find: shortest path from s to ¢

26



minimize er
Shortest paths :

subject to

Given: a directed graph for all e,

Find: shortest path from s to ¢ X, 2 0,

Claim: Length of the shortest path is flow out of s is 1 2 Ae T Z X, =1,

solution to program. e OUt Of s eintos

flow into 7 is 1 Z Ae — Z KXo = 1,

e lnto ¢ e out of ¢

forall v # s, ¢,

conservation of flow E xe — E X o

e out of v e INtO v
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minimize er
Shortest paths :

subject to
Given: a directed graph for all e,
: >

Find: shortest path from s to ¢ %, 2 U,
Claim: Length of the shortest path is 2 te Z X =1,
solution to program. eoutofs  ¢intos

Z X, — Z x, =1,
Proof sketch: Optimal solution must be a combination elnto: e out of ¢
of flows on shortest paths. Indeed, if there is a path
using edges with x, > 0 that is not a shortest path, forall v # s, 1,
delete the flow on this path and reroute it on a shortest Z X, = Z X,

path to get a better solution. e out of v e into v
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Vertex Cover

Given: an undirected graph

Find: smallest set of vertices touching
all edges

29



Vertex Cover

Given: an undirected graph

Find: smallest set of vertices touching
all edges

30

minimize Z X,
V
subject to

for all v,
0<x <1,

foralle = {u, v}
x,+x,2> 1



Vertex Cover

Given: an undirected graph

Find: smallest set of vertices touching

all edges

Want
x,=0orx, =1

31

minimize 2 X,

v

X

foralle = {u, v}
x,+x,2>1

subject to

for all v,
0<x <1,




Vertex Cover

Given: an undirected graph

Find: smallest set of vertices touching

all edges

1/2

1/2
1/2

There is a solution of value 3/2, even though
smallest vertex cover has size 2.

Want
x,=0orx, =1

32

minimize 2 X,

v

subject to

foralle = {u, v}
x,+x,2>1

for all v,
0<x <1,




Duality

maximize x; + 2x;
subject to

2 =X +3x; Z 1
—X;+X% —x3 55
x>0
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Duality

maximize x; + 2x;
subject to

2 =X +3x; Z 1
—X| T Xy — X3 <5
x>0

Claim: Optimum < 6
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Duality

maximize x; + 2x;
subject to

2 =X +3x; Z 1
—X;+X% —x3 55
x>0

Claim: Optimum < 6
Pf: x; + 2x,

= (2x; — X%, + 3x3) + (—x; + X, — X3)
<6
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S

Duality Claim: For all non-negative a, b, if

2a-b>1
maximize x; + 2x; —a+b>0
subject to 3a—-b>2
2x; — X% +3x; < 1 then
— X1+ X —Xx <5 opt <a+5b
x>0
- Pf:
Claim: Optimum < 6 X + 2x3
Pf: x; + 2x; - < a(2x) — x5+ 3x3) + b(—x; + X, — X3)

=(le—x2+3x3)+(—x1+x2—x3)é S a—l—Sb.
<6 5

36



Duality Claim: For all non-negative a, b, if

2a-b>1
maximize x; + 2x; —a+b>0
subject to 3a—-b>2
2x1 — Xy T 3x3 <1 primal then
— X1+ X —Xx <5 opt <a+5b
x>0
minimize a + 5b o
subject to M + 2%,
2a—b> 1 < a(2x) — x4+ 3x3) + b(—x; + X, — x3)
—Cl-l-bZ() dual SCl-l-Sb
3a—b>?2 :

a,b >0
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Duality Claim: For all non-negative a, b, if

2a—-b>1
maximize x; + 2x; —a+b>0
subject to 3a—-b>2
2x1 — Xy T 3x3 <1 primal then
— X1+ X —Xx <5 opt <a+5b
x>0
maximize —a — 5b o )
subject to A T o
—261 n b S o 1 o S Cl(le — X2 + 3X3) + b(—xl +X2 — X3)
a—b <0 <a+5b.
—3a+b< -2 :

a,b >0

38



S

Duality

maximize x; + 2x;
subject to

2 =X +3x; Z 1
— X1+ X —Xx <5
x>0

maximize —a — 5b

subject to
—2a+b< -1
a—b <0
—3a+b < -2

a,b >0

primal

dual

39

What is dual of dual?



S

Duality

maximize x; + 2x;
subject to

2 =X +3x; Z 1
— X1+ X —Xx <5
x>0

maximize —a — 5b

subject to
—2a+b< -1
a—b <0
—3a+b < -2

a,b >0

primal

dual

40

What is dual of dual?

minimize —y,; — 2y,
subject to
=2y +y,—3y; 2 — 1

V=Vt =—5
y >0



What is dual of dual?

Duality

minimize —y,; — 2y,

maximize x; + 2x; subject to
subject to 2y +y, —3y; > — 1
a 2X1—X2+3X3S 1 primal yl—y2-|-y32—5
b —x;i+x —x3 <5 y >0
x>0 5
o equivalent to
maximize —a — 5b
subject to maximize y, + 2y,
i —2a+b< -1 ol subject to
Y2 a—b<0 2yi =y, + 3y, < 1

3. —da+b< -2 Y1+ Y= Y3 <5
Cl,bZO 3 yz()

41



Duality

primal

maximize c'x
subject to
Ax < b

x>0

dual
minimize by
subject to
Aly > c
y=>0

42

dual
maximize (—b)'y
subject to
(A)ly < —c
y =20



Duality

primal dual
maximize cTx minimize Oy
subject to subject to
Ax <b Aly > c
x>0 y=>0

Thm: The dual of the dual is the primal.

43

dual
maximize (—b)'y
subject to
(—A)ly < -—c
y=>0



Duality

primal dual
maximize cTx minimize Oy
subject to subject to
Ax <b Aly > c
x>0 y=>0

Thm: The dual of the dual is the primal.

dual of dual

minimize (—c¢)'x

subject to

(A)Dx=-=b

x>0 )

dual
maximize (—b)'y
subject to
(—A)ly < -—c
y=>0



Duality

primal dual
maximize cTx minimize Oy
subject to subject to
Ax < b Aly > ¢
x>0 y=>0

Thm: The dual of the dual is the primal.

dual of dual
minimize (—c)'x maximize c'x
subject to subject to

(“A)Dx > -0 Ax < b
x>0 x>0

dual
maximize (—b)'y
subject to
(A)ly < —c
y =20



Duality

primal dual
maximize cTx minimize by
subject to subject to
Ax < b Aly =¢
x>0 y=>0

Thm: The dual of the dual is the primal.

Thm: (Weak Duality) Every solution to primal is at most every
solution to dual.

46



Duality

primal dual
maximize cTx minimize by
subject to subject to
Ax < b Aly =¢
x>0 y=>0

Thm: The dual of the dual is the primal.

Thm: (Weak Duality) Every solution to primal is at most every
solution to dual.

Thm: (Strong Duality) If primal has solution of finite value, then
value is equal to optimal solution of dual.
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Duality

primal dual
maximize c'x minimize by
subject to subject to
Ax < b Aly <c
x>0 y >0

Thm: (Strong Duality) If
primal has solution of finite
value, then value Is equal to
optimal solution of dual.

Fact: A vertex is
point for which n
of the inequalities
become tight.

By physics:

There must be y;, y; >

V.A; + yjAj = C.

f Ax = b correspond to sides touching x,
ATy = AT = ¢.

Then

bly.= IQW = (Ax)Ty = XTAW =xlc=rclx



Duality of Max flow

minimize c'a

maximize Z X, subject to
e out of s
for all e = (s, V),
subject to
J a,+b,> 1
for all e. for allbe i E)u, 1),
0<x, <c(e) e ™ Tu =

for all intermediate v, for all other e = (u, v),

Z r = Z N a,—b,+b,>0

e out of v e INTO v

for all e
a >0

€



Duality of Max flow

maximize Z X,
e out of s

subject to

for all e,
0<x, < c(e)
for all iIntermediate v,

Z X, = Z X,

e out of v e INTO v

minimize c'a
subject to

for all e = (s, V),

a,+ b, > 1

forall e = (u, 1),
a,—b,>0

for all other e = (u, v),
a,—b,+b,>0

for all e
a >0

€

minimize c'a

subject to
b,=1,b,=0
foralle = (u,v),
a,>b,— b,

for all e

a,> 0



minimize c'a
subject to

for all e = (s, v),
a,+b, <1

for all e = (u, 1),
a,—b, <0

for all other e = (u, v),
a,—b,+b,<0

for all e
a, > 0

minimize c'a

subject to
b,=1,b,=0
for all e = (u, v),
d, > bu o bv

for all e

a, > 0

51

minimize c'a
subject to

b =1,b,=0

S

foralle = (u, v),

a, = max{0,b, — b, }



minimize c'a
subject to

b,=1,b,=0

0<b, <1

forall e = (u, v),

a, = max{0,b, — b, }

Claim: Opt is achieved with
1>b,>0.
Pf. Take any solution and
move the extreme values

up/down. The solution only
Improves.
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minimize c'a
subject to

b,=1,b,=0

0<b, <1

foralle = (u,v),

a, = max{0,b, — b, }
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minimize c'a
subject to

b,=1,b,=0

0<b, <1

forall e = (u,v),

a, = max{0,b, — b, }

-~ Claim: Opt is achieved with

b, =0/1.
Pf: Pick0 <t <1
uniformly at random. If

b,>t setb, =1,
otherwise set it to 0. The

expected value of resulting

solution Is the same as
originall

54




DD @C o’(« b,=1

/

minimize cla

|
|

|

subject to

b,=1,b,=0 ,
b € (0.1} Min-Cut!

forall e = (u, v),
a, = max{0,b, — b, }

00) 100106 b, =0



Duality of Shortest Path
minimize )’ x,

€

subject to
for all e,
x, 2 0,
> a3 wel
e out of s ento s
Y - ¥ ow=-l
e out of ¢ e IN tO ¢

forall v # s, t,

Z X, — Z x,=0

e out of v e INto v

56



Duality of Shortest Path

minimize Z X,

€

subject to
dual
for all e,
X, 2 0, maximize a, — a,
subject to
> n- ¥ oa-t
e out of s e in to s for all edges e = (u, v),
a,—a, <1
> 5= ¥ ow=-l
e out of ¢ e in to ¢

forall v # s, t,

Z X, — Z x,=0

e out of v e INto v

57



Duality of Shortest Path

minimize Z X,

€

subject to
for all e,
x, 2 0,
> u- ¥ oasl
e out of s ento s

Z X, — Z x,=—1,

e out of ¢ einto¢

forall v # s, t,

Z X, — Z x,=0

e out of v e INto v

dual

maximize a, — a,
subject to

for all edges e = (u, v),

a,—a, <1

58



Duality and zero-sum games

Two player zero-sum game: Randomized strategy:
an m X n matrix G

G- :: payoff to row player, assuming row playe A column vector.x with
i W , umi W r uses
o -t ° o xiZO’ZxFI

i

strategy 7, and column player uses strategy j.
_Gi,j: payoff to column player.

y; 20, Zszl
J

Example: Chess

1. specifies how white would move in every possible
board configuration. TGy

J: specifies how black would move.

1 if white wins
G;,; =4 —1 ifblack wins
0 stalemate 59



Who decides on their strategy first?

If row player commits to x Randomized strategy:

Row player will get payoftf
min x'Gy = min(x'G); A column vector x with

y J xiZO,in=1

So, if row player has to play first:
max min x'Gy

Y inO,ZYjZI
J

If column player commits to y

Row player will get payoff x1Gy
max x'Gy = max(Gy);
X l

So, if column player has to play first

min max x'Gy
y A 60



von-Neumann’s min-max Theorem

If row player commits to x Doesn’t matter who plays first:
Row player will get payoftf Thm:
min x'Gy = min(x'G), max min x'Gy = min max x'Gy.
Y J X Yy y X
So, if row player has to play first:
max min x'Gy
X Yy

If column player commits to y

Row player will get payoftf
max x'Gy = max(Gy);
X l

So, if column player has to play first

min max x'Gy
y A 61



Using strong duality

Thm: max min x'Gy = min max x'Gy.
X V V X

max min(x'G); = min max(Gy),
X ] y l

primal dual
maximize 7 minimize w
subject to subject to
w X +...+x, =1 coefficient of zmustbe 1~ y;+ ... +y, =1
for all J, for all 1,
Vi z< (XTG)], coefficient of x; mustbe >0 w > (GYy),

x>0 y >0

62



Algorithms for Linear programs

Simplex Algorithm

Simple
Often fast in practice
Not polynomial time (on pathological counterexamples)

Ellipsoid Algorithm

More complicated
Polynomial time, but not always fast

63



Simplex

Start with a vertex
In each step,
move to a lower vertex

Problem: Number of vertices
on this path can be
exponential!

64



Simplex: how to find initial vertex?

maximize c'x minimize 7, + 2, + ...
subject to subject to

Ax <b 7 Ax<b+7z

x>0 x,7 >0

For this program, z; = max{0, — b;},x = 0 is
a vertex. Run simplex to find a solution with
z = 0. The x value of solution will be a a vertex

of original program!

65



Simplex: how to go to better vertex?

maximize c'x
subject to
Ax < b

x>0

A\

1. There must be Ax = b.
2. Find y satisfying n — 1 of
the equations, cTy > 0.

3. Change x = x + €y, until
some new eqguation
becomes tight.

66
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Ellipsoid method

Ellipsoid: a squished ball



Ellipsoid method

Ellipsoid: a squished ball

A
\/

(2x)* + (y/2)* < 1




Ellipsoid method

Ellipsoid: a squished ball

A
\/

(2x)* + (y/2)* < 1




Ellipsoid method

Ellipsoid: a squished ball

Ratio of area of ellipsoid to sphere:
1 2
— . — =1
N =

(2x)* + (y/2)* < 1




Ellipsoid method /\

Ellipsoid: a squished ball

(1,1)

Q= 1) +((y—D/2)* < 1

Ratio of area of ellipsoid to sphere:

(2x)* + (y/2)* < 1



Let U~ ! be the linear transformation

Ellipsoid methoc corresponding to a rotation.
Ellipsoid: a squished ball

(Z(Ul(xa y) o 1))2 + ((UZ(xa y) o 1)/2)2 S 1
(U, (6, 9))* + (Uy(x, ) < 1 ‘\

QU (x, )" + (Uy(x, y)/2)* < 1

(2

Ratio of area of ellipsoid to sphere:



The desired solution is bounded

Fact: If the solution is finite, then its magnitude is at most
20(po|y(input Iength))_

Pf. If finite, the solution occurs at a vertex. Since every
vertex satisfies Bx = d, for some B, d, we have x = B~ !d, /

and the size of coefficients of B~! are polynomially related
to the size of coefficients of A.

Fact: If there is finite solution, then volume of feasible region (i.e.
bolytope) is at least 2~ (POl (input length)) /

Pf sketch: The smallest angle that can be generated is
2—0(po|y(input Iength))_

/3



Ellipsoid method

.. | Is there x
maximize c'x .

| with
subject to

— >  clx>d
Ax < b
x > () Ax < b
— x>0

Claim: If we can find x inside
polytope in poly time, we can use
binary search to find the best

value of d in poly time!

74

Fact: If the solution is finite,

then its magnitude is at
nost 20(po|y(|nput Iength))_

Fact: If there is finite
solution, then volume of
feasible region (i.e.

polytope) is at least
2—0(po|y(input Iength))_

Consequence: We know

—T <clx < T, where
T < 20(po|y(input Iength))_



Using binary search

y=—T



Check polytope is non-empty

y=-T



Add new constraint

y=-T

(77




Find point

y=-T

/8




Add new constraint

y<—T/2

y=-T

79




Find point: polytope is empty!

y < —T1/2

y=-T1

80



Add new constraint

y<-—T/4

y<—T/2

81



Add new constraint

y< —T/4

y< —T/2

82



Find point

y<-—T/4

y< —T/2

83



y<-—T/4

y< —T)/2

84



Add new constraint

y<—T/4
y < —37T/8
y< —T/2

85



Find point: polytope is empty!

y< —T/4
y< —37/8
y < —T1/2

86



y<-—T/4
y< —37/8

87



Find point

y< —T/4
y<—37/8

88



Conclusion: It is enough to give an
algorithm to find a point in a polytope.




Ellipsoid algorithm for finding points in polytopes

Idea: Iteratively find ellipsoids where the density of
the polytope Is larger and larger, until a point is
found

90






92

Fact: If the solution is finite,

then its magnitude is at
nost 20Poly(input Iength))_




Check 0




Find violated inequality




Shift inequality to origin




Find ellipsoid containing
half-sphere




Find ellipsoid containing
half-sphere




Shift to center




Stretch to get sphere




Check 0




Find violated inequality




Shift inequality to orig




Find ellipsoid containing

half-sphere ﬁ




Find ellipsoid containing
half-sphere




Shift to center

105



Stretch to get sphere




Check 0




Ellipsoid method

Algorithm to find element of non-empty F:

Is there x | | o
with 1. Let £ be circle of radius R containing polytope P.
Ty > 2.1f 0 € P, output 0.
Ax < b 3. Otherwise half-circle containing P, and ellipsoid £’
N >_() containing half-circle.
- 4. Scale and shift £’ to get E, and find element of P
using new L.
B Corollary: After ¢ rountds,
Key Lemma: vol(E’)/vol(E) < ¢2+1 vol(P)/vol(E") > ex+D - vol(P)/vol(E)

Corollary: vol(P)/vol(E") > ez<n1+1> . vol(P)/vol(E) Corollary: The algorithm must terminate in
poly(input length) steps.

108



E: inz <1

E’: ellipsoid containing right half-ball

n+1\2 1 \2 n*-1 ,
Xy — + - ) x7 <1
S ) = X

Claim: £’ contains right half-ball.

If x € £, x; > 0, then

+1\2 1 \2 n*-1
() (=) + = 2
n n+1 2

1>2

n
_((n+1)x1—1>2 | n?— 1 .sz
- n Cn2 i

>2

(n*+2n+ Dxf —2(n+ Dx;+1  n?—1 Y
— | ’ X;

n2 n2

using 0 < x; <1 and Zx?ﬁl
i>2 i

_Qn+2xf-Qn+2x; 1 nt-1 , @42 -1 1 n*-1 » 1 n®—1 <

— | | 'ZXZ- mlélz | n2 | n2 'in _nz | .

n2 n2 n2 n



—1
Claim: vol(E£")/vol(E) < e2n+D

E: inz <1

E"
1\? 1 \2 n*-1
() )+t B
n n+ 1 n =
vol(E")/vol(E)
n ( n’ )n—l
Cn+1 \nz—l using 1 + z < €7
|

1 (n—1)/2 | (n— 1)/2 , | 1
(1 — ) . (1 + ) < e n+l e n2-1 = e n+l . e2n+1) == e2(n+1)
> S

n+1 ne— 1

110



Why is linear programming so powerful?

In a sense, every algorithm can be expressed as
linear program!



Boolean circuits




Boolean circuits

Fact: If f: {O0,1}" — {0,1} can be computed in
time 7, then it can be computed by a circuit of
size O(T logT) .
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Boolean circuits

Fact: If f: {O0,1}" — {0,1} can be computed in
time 7, then it can be computed by a circuit of
size O(T logT) .

, X,
Xg < X

Xe 2 X +x,— 1

A w(V) gz
A A 7

\‘ >x2

C Xq <x1+x2

X, —l—x
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BOOIean CIrCUItS Fact: If f: {O0,1}" — {0,1} can be computed in

time 7, then it can be computed by a circuit of

D Xy B X size O(T logT) .
° xg@ Xg S X
' Xe < X
0 Xe 2 X +x,— 1
Computing fis
° ° equivalent to
° xg@ X, > X finding x satisfying

X ‘ X, > X, these constraints!

DEONIE
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Approximation Algorithms from Linear Programs

Claim: Any feasible solution that is
a vertex of the polytope must have

x, € {0,1/2,1}.

minimize va Pf. |
Consider the solutions:

subject to ' Ay if x, € {0,1/2,1}

y, =14 X, +¢€ ifx, > 1/2

forall v, X, — € otherwise. | |
0<x <1, y, Z are valid solutions to

| 0.1/9 1 the program. If
foralle = {u, v} Ay fx, € 10,1/2,1} x, & 10,1/2,1}, then
X, +x,> 1 g, =% —€ ifx,> 172 y # 7, yetx = (y + 2)/2,

X, + € otherwise. SO X cannot be a vertex.

Vertex cover:
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Approximation Algorithms from Linear Programs

Vertex cover: Claim: Any feasible solution that is
a vertex of the polytope must have

minimize Zx x, € {0,1/2,1}.

Vv
Vv

subject 1o Consequence: Let x be a solution
that is a vertex of the polytope. If

for all v, we pick the set of vertices

0<x <1,

Let S = (v :x, > 0}, this is a valid
foralle = {u, v} vertex cover that is at most twice
X, +x,>1 as large as the best one!

117



Approximation Algorithms from Linear Programs

Set cover: Dual program:
minimize Z X maximize Z \
subject to ’ subject to i

for all S, for all 1,

0 < xq, 0Ly,
foralli € {1,...,n} for all S

ZXSZI 2%’31

iES ZES
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Approximation Algorithms from Linear Programs

Dual program:

maximize Z V;
i

subject to

for all 1,
0 <y,

for all §

Z%‘Sl

Recall greedy algorithm:

In each step, pick the set that
covers the most remaining
elements.

Let z; = 1/k, if i was covered
in a group of k elements.

letH. =1+ 1/2+ ...+ 1/r.
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Claim: z/H_ is a valid solution to

dual.
Pf:
Without loss of generality,

suppose S = {1,2,...,k}, and
the elements are covered In order.
Then we see:

2.7

€S

<(Uk+ k=1 +...+1
<H,



Approximation Algorithms from Linear Programs

Dual program:

maximize Z V;
i

subject to

for all 1,
0 <y,

for all §

Z%‘Sl

Recall greedy algorithm:

In each step, pick the set that
covers the most remaining
elements.

Let z; = 1/k, if i was covered
in a group of k elements.

letH. =1+ 1/2+ ...+ 1/r.
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Claim: z/H_ is a valid solution to
dual.

Conseqguence:
The dual has value at least the

size of greedy solution /H . Since
H, < O(logn), the greedy is

within O(log n) of the optimal
solution.



