
Linear Programming
A really very extremely big hammer
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Given: a polytope
Find: the lowest point in the polytope

polytope
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Given: a polytope
Find: the lowest point in the polytope

polytope
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Given: a polytope
Find: the lowest point in the polytope

maximize  

subject to 





z1 + 2z3

2z1 − z2 + 3z3 ≤ 1
−z1 + z2 − z3 ≤ 5

polytope
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Given: a polytope
Find: the lowest point in the polytope

maximize  

subject to 





z1 + 2z3

2z1 − z2 + 3z3 ≤ 1
−z1 + z2 − z3 ≤ 5

polytope

We have fast 
algorithms for this!
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Linear Algebra primer
, think of them as column vectors.a, x ∈ ℝn

a⊺x = a1x1 + … + anxn

The set of  satisfying  is a hyperplane.
x a⊺x = 0
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a⊺x = 0
7



a⊺x ≤ 0
8



a⊺x ≤ b
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Given: a polytope
Find: the lowest point in the polytope
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Given: a polytope
Find: the lowest point in the polytope

A1x ≤ b1

A 5x
≤

b 5

A
3 x ≤

b
3

A
4 x

≤
b

4

A 2x
≤

b 2
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Linear Algebra primer
, think of them as column vectors.a, x ∈ ℝn

a⊺x = a1x1 + … + anxn

Ax =

A1x
A2x
A3x

Amx
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Given: a polytope
Find: the lowest point in the polytope

A1x ≤ b1

A 5x
≤

b 5

A
3 x ≤

b
3

A
4 x

≤
b

4

A 2x
≤

b 2

maximize  

subject to 


c⊺x

Ax ≤ b

 means 
 


for all 

Ax ≤ b
(Ax)i ≤ bi

i

c
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Standard form

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0
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Standard form

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0

maximize  

subject to 





z1 + 2z3

2z1 − z2 + 3z3 ≤ 1
−z1 + z2 − z3 ≤ 5
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Standard form

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0

maximize  

subject to 





z1 + 2z3

2z1 − z2 + 3z3 ≤ 1
−z1 + z2 − z3 ≤ 5

maximize  

subject to 







(x1,a − x1,b) + 2(x3,a − x3,b)

2(x1,a − x1,b) − (x2,a − x2,b) + 3(x3,a − x3,b) ≤ 1
−(x1,a − x1,b) + (x2,a − x2,b) − (x3,a − x3,b) ≤ 5
x ≥ 0
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Max Flow
Given: a flow network

maximize  flow out of s


subject to 


Respecting capacities and 
conservation
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Max Flow
Given: a flow network

maximize  flow out of s


subject to 


Respecting capacities and 
conservation

maximize  


subject to

 

∑
e out of s

xe
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Max Flow
Given: a flow network

maximize  flow out of s


subject to 


Respecting capacities and 
conservation

maximize  


subject to

 

for all ,


∑
e out of s

xe

e
0 ≤ xe ≤ c(e)
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Max Flow
Given: a flow network

maximize  flow out of s


subject to 


Respecting capacities and 
conservation

maximize  


subject to

 

for all ,




for all intermediate ,


∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe
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maximize  


subject to

 

for all ,




for all intermediate ,


∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0
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maximize  


subject to

 

for all ,




for all intermediate ,


∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe 1. ce = {1 if e out of s
0 otherwise.

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0
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maximize  


subject to

 

for all ,




for all intermediate ,


∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe
1. 


2.

ce = {1 if e out of s
0 otherwise.

u⊺x ≥ r ≡ (−u)⊺x ≤ − r

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0
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maximize  


subject to

 

for all ,




for all intermediate ,


∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe

1. 


2. 

3.

ce = {1 if e out of s
0 otherwise.

u⊺x ≥ r ≡ (−u)⊺x ≤ − r
u⊺x = r ≡ u⊺x ≤ r, u⊺x ≥ r

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0
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maximize  


subject to

 

for all ,




for all intermediate ,


∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe

1. 


2. 

3. 

4. maximize minimize 

ce = {1 if e out of s
0 otherwise.

u⊺x ≥ r ≡ (−u)⊺x ≤ − r
u⊺x = r ≡ u⊺x ≤ r, u⊺x ≥ r

c⊺x ≡ (−c)⊺x

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0
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Shortest paths
Given: a directed graph

Find: shortest path from  to s t
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Shortest paths
Given: a directed graph

minimize  


subject to


for all ,

,


,


,


for all ,




 

∑
e

xe

e
xe ≥ 0

∑
e out of s

xe − ∑
e in to s

xe = 1

∑
e in to t

xe − ∑
e out of t

xe = 1

v ≠ s, t

∑
e out of v

xe = ∑
e into v

xe

Find: shortest path from  to s t

Claim: Length of the shortest path is

solution to program.

flow out of  is 1s

flow into  is 1t

conservation of flow
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Shortest paths
Given: a directed graph

minimize  


subject to


for all ,

,


,


,


for all ,




 

∑
e

xe

e
xe ≥ 0

∑
e out of s

xe − ∑
e in to s

xe = 1

∑
e in to t

xe − ∑
e out of t

xe = 1

v ≠ s, t

∑
e out of v

xe = ∑
e into v

xe

Find: shortest path from  to s t

Claim: Length of the shortest path is

solution to program.

Proof sketch: Optimal solution must be a combination 
of flows on shortest paths. Indeed, if there is a path 
using edges with  that is not a shortest path, 
delete the flow on this path and reroute it on a shortest 
path to get a better solution.

xe > 0
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Vertex Cover
Given: an undirected graph

Find: smallest set of vertices touching

all edges
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Vertex Cover
Given: an undirected graph minimize  


subject to


for all ,

,


for all   


∑
v

xv

v
0 ≤ xv ≤ 1

e = {u, v}
xu + xv ≥ 1

Find: smallest set of vertices touching

all edges
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Vertex Cover
Given: an undirected graph

Want 
 or xv = 0 xv = 1

Find: smallest set of vertices touching

all edges

minimize  


subject to


for all ,

,


for all   


∑
v

xv

v
0 ≤ xv ≤ 1

e = {u, v}
xu + xv ≥ 1
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Vertex Cover
Given: an undirected graph

Want 
 or xv = 0 xv = 1

1/2

There is a solution of value , even though 
smallest vertex cover has size .

3/2
2

1/2

1/2

Find: smallest set of vertices touching

all edges

minimize  


subject to


for all ,

,


for all   


∑
v

xv

v
0 ≤ xv ≤ 1

e = {u, v}
xu + xv ≥ 1
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Duality
maximize  

subject to 







x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0
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Duality
maximize  

subject to 







x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0

Claim: Optimum 
≤ 6
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Duality

Claim: Optimum 

Pf: 





≤ 6
x1 + 2x3

= (2x1 − x2 + 3x3) + (−x1 + x2 − x3)
≤ 6

maximize  

subject to 







x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0
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Duality Claim: For all non-negative , if








then

opt 


Pf:  
 

 

a, b
2a − b ≥ 1
−a + b ≥ 0
3a − b ≥ 2

≤ a + 5b

x1 + 2x3
≤ a(2x1 − x2 + 3x3) + b(−x1 + x2 − x3)
≤ a + 5b .

Claim: Optimum 

Pf: 





≤ 6
x1 + 2x3

= (2x1 − x2 + 3x3) + (−x1 + x2 − x3)
≤ 6

a
b

maximize  

subject to 







x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0
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Duality

primal

dual

minimize  

subject to 









a + 5b

2a − b ≥ 1
−a + b ≥ 0
3a − b ≥ 2
a, b ≥ 0

a
b

maximize  

subject to 







x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0

Claim: For all non-negative , if








then

opt 


Pf:  
 

 

a, b
2a − b ≥ 1
−a + b ≥ 0
3a − b ≥ 2

≤ a + 5b

x1 + 2x3
≤ a(2x1 − x2 + 3x3) + b(−x1 + x2 − x3)
≤ a + 5b .
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Duality

primal

dual

maximize  

subject to 










−a − 5b

−2a + b ≤ − 1
a − b ≤ 0
−3a + b ≤ − 2
a, b ≥ 0

a
b

maximize  

subject to 







x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0

Claim: For all non-negative , if








then

opt 


Pf:  
 

 

a, b
2a − b ≥ 1
−a + b ≥ 0
3a − b ≥ 2

≤ a + 5b

x1 + 2x3
≤ a(2x1 − x2 + 3x3) + b(−x1 + x2 − x3)
≤ a + 5b .
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Duality

primal

dual

What is dual of dual?

a
b

maximize  

subject to 







x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0
maximize  

subject to 










−a − 5b

−2a + b ≤ − 1
a − b ≤ 0
−3a + b ≤ − 2
a, b ≥ 0
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Duality

primal

dual

What is dual of dual?

y1
y2
y3

minimize  

subject to 







−y1 − 2y3

−2y1 + y2 − 3y3 ≥ − 1
y1 − y2 + y3 ≥ − 5
y ≥ 0

a
b

maximize  

subject to 







x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0
maximize  

subject to 










−a − 5b

−2a + b ≤ − 1
a − b ≤ 0
−3a + b ≤ − 2
a, b ≥ 0
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Duality

primal

What is dual of dual?

equivalent to 

maximize  

subject to 







x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0

a
b

minimize  

subject to 







−y1 − 2y3

−2y1 + y2 − 3y3 ≥ − 1
y1 − y2 + y3 ≥ − 5
y ≥ 0

maximize  

subject to 







y1 + 2y3

2y1 − y2 + 3y3 ≤ 1
−y1 + y2 − y3 ≤ 5
y ≥ 0

dual
y1
y2
y3

maximize  

subject to 










−a − 5b

−2a + b ≤ − 1
a − b ≤ 0
−3a + b ≤ − 2
a, b ≥ 0
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Duality

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0

minimize  

subject to 





b⊺y

A⊺y ≥ c
y ≥ 0

dualprimal

≡
maximize  

subject to 





(−b)⊺y

(−A)⊺y ≤ − c
y ≥ 0

dual
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Duality

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0

minimize  

subject to 





b⊺y

A⊺y ≥ c
y ≥ 0

Thm: The dual of the dual is the primal.

dualprimal

≡
maximize  

subject to 





(−b)⊺y

(−A)⊺y ≤ − c
y ≥ 0

dual
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Duality

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0

minimize  

subject to 





b⊺y

A⊺y ≥ c
y ≥ 0

Thm: The dual of the dual is the primal.

dualprimal

≡
maximize  

subject to 





(−b)⊺y

(−A)⊺y ≤ − c
y ≥ 0

dual

minimize  

subject to 





(−c)⊺x

((−A)⊺)⊺x ≥ − b
x ≥ 0

dual of dual
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Duality

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0

minimize  

subject to 





b⊺y

A⊺y ≥ c
y ≥ 0

Thm: The dual of the dual is the primal.

dualprimal

≡
maximize  

subject to 





(−b)⊺y

(−A)⊺y ≤ − c
y ≥ 0

dual

minimize  

subject to 





(−c)⊺x

((−A)⊺)⊺x ≥ − b
x ≥ 0

dual of dual
maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0

≡
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Duality
minimize  

subject to 





b⊺y

A⊺y = c
y ≥ 0

Thm: The dual of the dual is the primal.

Thm: (Weak Duality) Every solution to primal is at most every 
solution to dual.

dualprimal

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0
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Duality
minimize  

subject to 





b⊺y

A⊺y = c
y ≥ 0

Thm: The dual of the dual is the primal.

Thm: (Weak Duality) Every solution to primal is at most every 
solution to dual.

Thm: (Strong Duality) If primal has solution of finite value, then 
value is equal to optimal solution of dual.

dualprimal

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0
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Duality
maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0

minimize  

subject to 





b⊺y

A⊺y ≤ c
y ≥ 0

Thm: (Strong Duality) If 
primal has solution of finite 
value, then value is equal to 
optimal solution of dual.

c

−A1

−Ai −Aj

By physics:

There must be 


.

If  correspond to sides touching , 

. 

Then 


yi, yj ≥ 0
yiAi + yjAj = c

̂Ax = b̂ x
A⊺y = ̂A⊺ ̂y = c

b⊺y = b̂⊺ ̂y = ( ̂Ax)⊺y = x⊺ ̂A⊺ ̂y = x⊺c = c⊺x

dualprimal

Fact: A vertex is 
point for which  
of the inequalities 
become tight.

n
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Duality of Max flow
maximize  


subject to

 

for all ,




for all intermediate ,


∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe

minimize  


subject to

 

for all ,




for all ,




for all other ,





for all 


c⊺a

e = (s, v)
ae + bv ≥ 1

e = (u, t)
ae − bu ≥ 0

e = (u, v)
ae − bu + bv ≥ 0

e
ae ≥ 0
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Duality of Max flow
maximize  


subject to

 

for all ,




for all intermediate ,


∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe

minimize  


subject to

 





for all ,




for all 


c⊺a

bs = 1,bt = 0

e = (u, v)
ae ≥ bu − bv

e
ae ≥ 0

≡

minimize  


subject to

 

for all ,




for all ,




for all other ,





for all 


c⊺a

e = (s, v)
ae + bv ≥ 1

e = (u, t)
ae − bu ≥ 0

e = (u, v)
ae − bu + bv ≥ 0

e
ae ≥ 0
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minimize  


subject to

 

for all ,




for all ,




for all other ,





for all 


c⊺a

e = (s, v)
ae + bv ≤ 1

e = (u, t)
ae − bu ≤ 0

e = (u, v)
ae − bu + bv ≤ 0

e
ae ≥ 0

≡

minimize  


subject to

 





for all ,




for all 


c⊺a

bs = 1,bt = 0

e = (u, v)
ae ≥ bu − bv

e
ae ≥ 0

≡

minimize  


subject to

 





for all ,




c⊺a

bs = 1,bt = 0

e = (u, v)
ae = max{0,bu − bv}
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bs = 1

bt = 0

Claim: Opt is achieved with

 .


Pf: Take any solution and 
move the extreme values 

up/down. The solution only 
improves.

1 ≥ bu ≥ 0

minimize  


subject to

 







for all ,




c⊺a

bs = 1,bt = 0
0 ≤ bu ≤ 1

e = (u, v)
ae = max{0,bu − bv}
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bs = 1

bt = 0

minimize  


subject to

 







for all ,




c⊺a

bs = 1,bt = 0
0 ≤ bu ≤ 1

e = (u, v)
ae = max{0,bu − bv}
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minimize  


subject to

 







for all ,




c⊺a

bs = 1,bt = 0
0 ≤ bu ≤ 1

e = (u, v)
ae = max{0,bu − bv}

Claim: Opt is achieved with

 .


Pf: Pick  
uniformly at random. If 

, set , 
otherwise set it to . The 

expected value of resulting 
solution is the same as 

original!

bu = 0/1
0 ≤ t ≤ 1

bu ≥ t bu = 1
0

bs = 1

bt = 0
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minimize  


subject to

 







for all ,




c⊺a

bs = 1,bt = 0
bu ∈ {0,1}

e = (u, v)
ae = max{0,bu − bv}

bu = 1

bv = 0

Min-Cut!
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Duality of Shortest Path
minimize  


subject to


for all ,

,


,


,


for all ,




 

∑
e

xe

e
xe ≥ 0

∑
e out of s

xe − ∑
e in to s

xe = 1

∑
e out of t

xe − ∑
e in to t

xe = − 1

v ≠ s, t

∑
e out of v

xe − ∑
e into v

xe = 0
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Duality of Shortest Path
minimize  


subject to


for all ,

,


,


,


for all ,




 

∑
e

xe

e
xe ≥ 0

∑
e out of s

xe − ∑
e in to s

xe = 1

∑
e out of t

xe − ∑
e in to t

xe = − 1

v ≠ s, t

∑
e out of v

xe − ∑
e into v

xe = 0

maximize  

subject to


for all edges ,




as − at

e = (u, v)
au − av ≤ 1

dual
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Duality of Shortest Path
minimize  


subject to


for all ,

,


,


,


for all ,




 

∑
e

xe

e
xe ≥ 0

∑
e out of s

xe − ∑
e in to s

xe = 1

∑
e out of t

xe − ∑
e in to t

xe = − 1

v ≠ s, t

∑
e out of v

xe − ∑
e into v

xe = 0

s

t

dual

maximize  

subject to


for all edges ,




as − at

e = (u, v)
au − av ≤ 1
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Duality and zero-sum games
Two player zero-sum game: 
an  matrix  

: payoff to row player, assuming row player uses 
strategy , and column player uses strategy .


: payoff to column player.


Example: Chess

: specifies how white would move in every possible 

board configuration.

: specifies how black would move.


 

m × n G

Gi,j
i j

−Gi,j

i

j

Gi,j = {
1 if white wins
−1 if black wins
0 stalemate

Randomized strategy: 

probability distribution on row strategies

A column vector  with


,   


probability distribution on column strategies


,  


expected payoff to row player


x
xi ≥ 0 ∑

i

xi = 1

yi ≥ 0 ∑
j

yj = 1

x⊺Gy
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Who decides on their strategy first?
If row player commits to  

Row player will get payoff




So, if row player has to play first:




If column player commits to  

Row player will get payoff




So, if column player has to play first


x

min
y

x⊺Gy = min
j

(x⊺G)j

max
x

min
y

x⊺Gy

y

max
x

x⊺Gy = max
i

(Gy)i

min
y

max
x

x⊺Gy

Randomized strategy: 

probability distribution on row strategies

A column vector  with


,   


probability distribution on column strategies


,  


expected payoff to row player


x
xi ≥ 0 ∑

i

xi = 1

yi ≥ 0 ∑
j

yj = 1

x⊺Gy
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 von-Neumann’s min-max Theorem  
If row player commits to  

Row player will get payoff




So, if row player has to play first:




If column player commits to  

Row player will get payoff




So, if column player has to play first


x

min
y

x⊺Gy = min
j

(x⊺G)j

max
x

min
y

x⊺Gy

y

max
x

x⊺Gy = max
i

(Gy)i

min
y

max
x

x⊺Gy

Doesn’t matter who plays first:


Thm:  
.max

x
min

y
x⊺Gy = min

y
max

x
x⊺Gy
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Using strong duality
Thm: .max

x
min

y
x⊺Gy = min

y
max

x
x⊺Gy

maximize  

subject to





for all ,




z

x1 + … + xm = 1

j
z ≤ (x⊺G)j

x ≥ 0

            max
x

min
j

(x⊺G)j = min
y

max
i

(Gy)i

minimize  

subject to





for all ,




w

y1 + … + ym = 1

i
w ≥ (Gy)i

y ≥ 0

w

yj

coefficient of  must be z 1

coefficient of  must be xi ≥ 0

primal dual
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Algorithms for Linear programs

Simplex Algorithm

Simple

Often fast in practice

Not polynomial time (on pathological counterexamples)

Ellipsoid Algorithm

More complicated

Polynomial time, but not always fast
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Simplex

Start with a vertex 
In each step, 

move to a lower vertex

Problem: Number of vertices 
on this path can be 
exponential!
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Simplex: how to find initial vertex?

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0

minimize 

subject to 





z1 + z2 + …

Ax ≤ b + z
x, z ≥ 0

For this program,  is 
a vertex. Run simplex to find a solution with 

. The  value of solution will be a a vertex 
of original program!

zi = max{0, − bi}, x = 0

z = 0 x
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Simplex: how to go to better vertex?

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0

1. There must be .

2. Find  satisfying  of 
the equations, .


3. Change , until 
some new equation 
becomes tight.

̂Ax = b̂
y n − 1

c⊺y > 0
x = x + ϵy
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Ellipsoid method
Ellipsoid: a squished ball

x2 + y2 ≤ 1
0
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Ellipsoid method
Ellipsoid: a squished ball

0

(2x)2 + (y/2)2 ≤ 1

x2 + y2 ≤ 1

68



Ellipsoid method
Ellipsoid: a squished ball

0

(2x)2 + (y/2)2 ≤ 1

x2 + y2 ≤ 1
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Ellipsoid method
Ellipsoid: a squished ball

0

(2x)2 + (y/2)2 ≤ 1

x2 + y2 ≤ 1

Ratio of area of ellipsoid to sphere:




1
2

⋅
2
1

= 1
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Ellipsoid method
Ellipsoid: a squished ball

0

(2(x − 1))2 + ((y − 1)/2)2 ≤ 1

(1,1)

x2 + y2 ≤ 1

(2x)2 + (y/2)2 ≤ 1

Ratio of area of ellipsoid to sphere:




1
2

⋅
2
1

= 1
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Ellipsoid method
Ellipsoid: a squished ball

0

(2(U1(x, y) − 1))2 + ((U2(x, y) − 1)/2)2 ≤ 1

(U1(x, y))2 + (U2(x, y))2 ≤ 1

(2U1(x, y))2 + (U2(x, y)/2)2 ≤ 1

Ratio of area of ellipsoid to sphere:




1
2

⋅
2
1

= 1

Let  be the linear transformation

corresponding to a rotation.
U−1
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The desired solution is bounded
Fact: If the solution is finite, then its magnitude is at most 

.2O(𝗉𝗈𝗅𝗒(input length))

Fact: If there is finite solution, then volume of feasible region (i.e. 
polytope) is at least .2−O(𝗉𝗈𝗅𝗒(input length))

Pf: If finite, the solution occurs at a vertex. Since every 
vertex satisfies , for some , we have , 
and the size of coefficients of  are polynomially related 
to the size of coefficients of .

Bx = d B, d x = B−1d
B−1

A

Pf sketch: The smallest angle that can be generated is 
.2−O(𝗉𝗈𝗅𝗒(input length))
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Ellipsoid method

maximize  

subject to 





c⊺x

Ax ≤ b
x ≥ 0

Is there  
with







x

c⊺x ≥ d
Ax ≤ b
x ≥ 0

Claim: If we can find  inside  
polytope in poly time, we can use 
binary search to find the best 
value of  in poly time!

x

d

Fact: If the solution is finite, 
then its magnitude is at 
most .2O(𝗉𝗈𝗅𝗒(input length))

Fact: If there is finite 
solution, then volume of 
feasible region (i.e. 
polytope) is at least 

.2−O(𝗉𝗈𝗅𝗒(input length))

Consequence: We know

, where 

.
−T ≤ c⊺x ≤ T
T ≤ 2O(𝗉𝗈𝗅𝗒(input length))
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Using binary search
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Check polytope is non-empty
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Add new constraint
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Find point
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Add new constraint
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Find point: polytope is empty!
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Add new constraint
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Add new constraint
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Find point
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Add new constraint
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Find point: polytope is empty!
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Find point
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Conclusion: It is enough to give an 
algorithm to find a point in a polytope.

89



Ellipsoid algorithm for finding points in polytopes

Idea: Iteratively find ellipsoids where the density of 
the polytope is larger and larger, until a point is 

found
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Fact: If the solution is finite, 
then its magnitude is at 
most .2O(𝗉𝗈𝗅𝗒(input length))
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Check 0
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Find violated inequality
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Shift inequality to origin
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Find ellipsoid containing 

half-sphere
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Find ellipsoid containing 

half-sphere
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Shift to center
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Stretch to get sphere
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Check 0
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Find violated inequality

101



Shift inequality to origin
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Find ellipsoid containing 

half-sphere
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Find ellipsoid containing 

half-sphere
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Shift to center
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Stretch to get sphere
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Check 0
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Ellipsoid method

Is there  
with







x

c⊺x ≥ d
Ax ≤ b
x ≥ 0

Algorithm to find element of non-empty : 
1. Let  be circle of radius  containing polytope .

2. If , output .

3. Otherwise half-circle containing , and ellipsoid  
containing half-circle.


4. Scale and shift  to get , and find element of  
using new .

P
E R P

0 ∈ P 0
P E′ 

E′ E P
E

Corollary: 𝗏𝗈𝗅(P)/𝗏𝗈𝗅(E′ ) ≥ e
1

2(n + 1) ⋅ 𝗏𝗈𝗅(P)/𝗏𝗈𝗅(E)

Key Lemma: 𝗏𝗈𝗅(E′ )/𝗏𝗈𝗅(E) ≤ e
−1

2(n + 1)

Corollary: After  rounds, t
𝗏𝗈𝗅(P)/𝗏𝗈𝗅(E′ ) ≥ e

t
2(n + 1) ⋅ 𝗏𝗈𝗅(P)/𝗏𝗈𝗅(E)

Corollary: The algorithm must terminate in 
 steps.𝗉𝗈𝗅𝗒(input length)
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: E ∑
i

x2
i ≤ 1

: ellipsoid containing right half-ball
E′ 

( n + 1
n )

2

(x1 −
1

n + 1 )
2

+
n2 − 1

n2
⋅ ∑

i>2

x2
i ≤ 1

If , , then 








  


  .

x ∈ E x1 ≥ 0

( n + 1
n )

2

(x1 −
1

n + 1 )
2

+
n2 − 1

n2
⋅ ∑

i>2

x2
i

= ( (n + 1)x1 − 1
n )

2
+

n2 − 1
n2

⋅ ∑
i>2

x2
i

=
(n2 + 2n + 1)x2

1 − 2(n + 1)x1 + 1
n2

+
n2 − 1

n2
⋅ ∑

i>2

x2
i

=
(2n + 2)x2

1 − (2n + 2)x1

n2
+

1
n2

+
n2 − 1

n2
⋅ ∑

i

x2
i =

(2n + 2)x1(x1 − 1)
n2

+
1
n2

+
n2 − 1

n2
⋅ ∑

i

x2
i ≤

1
n2

+
n2 − 1

n2
≤ 1

using  and 0 ≤ x1 ≤ 1 ∑
i

x2
i ≤ 1

Claim:  contains right half-ball.E′ 
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Claim: 𝗏𝗈𝗅(E′ )/𝗏𝗈𝗅(E) ≤ e
−1

2(n + 1)

: E ∑
i

x2
i ≤ 1

: 
E′ 

( n + 1
n )

2

(x1 −
1

n + 1 )
2

+
n2 − 1

n2
⋅ ∑

i>2

x2
i ≤ 1

 

 

 

𝗏𝗈𝗅(E′ )/𝗏𝗈𝗅(E)

=
n

n + 1
⋅ ( n2

n2 − 1 )
n−1

= (1 −
1

n + 1 ) ⋅ (1 +
1

n2 − 1 )
(n−1)/2

≤ e− 1
n + 1 ⋅ e

(n − 1)/2
n2 − 1 = e− 1

n + 1 ⋅ e
1

2(n + 1) = e
−1

2(n + 1)

using 1 + z ≤ ez

110



Why is linear programming so powerful?

In a sense, every algorithm can be expressed as 
linear program!
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Boolean circuits

x1 x2 x3

x1 � x2 � x3

_

^ ^
^ ^

_

^
^

^

¬x1 ¬x2 ¬x3
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Boolean circuits

x1 x2 x3

x1 � x2 � x3

_

^ ^
^ ^

_

^
^

^

¬x1 ¬x2 ¬x3

Fact: If  can be computed in 
time , then it can be computed by a circuit of 
size 

f : {0,1}n → {0,1}
T
O(T log T) .
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Boolean circuits

x1 x2 x3

x1 � x2 � x3

_

^ ^
^ ^

_

^
^

^

¬x1 ¬x2 ¬x3

Fact: If  can be computed in 
time , then it can be computed by a circuit of 
size 

f : {0,1}n → {0,1}
T
O(T log T) .

^

x1 x2

xg 




xg ≤ x1
xg ≤ x2

xg ≥ x1 + x2 − 1

_

<latexit sha1_base64="EClbQycrfqvOtFgb3BL3v31ZFcQ=">AAAB6XicbVBNS8NAEJ34WeNX1aOXxVLwYkmkoMeiF48V7Ae0pWy2k3bJJht2N4US+hcETxav/iGv/huTNgdtfTDweG+GmXleLLg2jvNtbW3v7O7tlw7sw6Pjk9Py2Xlby0QxbDEppOp6VKPgEbYMNwK7sUIaegI7XvCY+50pKs1l9GJmMQ5COo64zxk1udSfIg7LFafmLEE2iVuQChRoDstf/ZFkSYiRYYJqnZrEN3jjSRnM7Wo/0RhTFtAx9jIa0RD1IF1eOifVTBkRX6qsIkOWqv1rIqWh1rPQyzpDaiZ63cvF/7xeYvz7QcqjODEYsdUiPxHESJK/TUZcITNilhHKFDecETahijKThWNnEbjrD2+S9m3Nrdfqz/VK46EIowSXcAXX4MIdNOAJmtACBhN4hXdYWIH1Zi2sj1XrllXMXMAfWJ8/xKSNfQ==</latexit>

x1 x2






xg ≥ x1
xg ≥ x2

xg ≤ x1 + x2

xg

¬xg = 1 − xg

0 ≤ x ≤ 1
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Boolean circuits

x1 x2 x3

x1 � x2 � x3

_

^ ^
^ ^

_

^
^

^

¬x1 ¬x2 ¬x3

Fact: If  can be computed in 
time , then it can be computed by a circuit of 
size 

f : {0,1}n → {0,1}
T
O(T log T) .

^

x1 x2

xg 




xg ≤ x1
xg ≤ x2

xg ≥ x1 + x2 − 1

_

<latexit sha1_base64="EClbQycrfqvOtFgb3BL3v31ZFcQ=">AAAB6XicbVBNS8NAEJ34WeNX1aOXxVLwYkmkoMeiF48V7Ae0pWy2k3bJJht2N4US+hcETxav/iGv/huTNgdtfTDweG+GmXleLLg2jvNtbW3v7O7tlw7sw6Pjk9Py2Xlby0QxbDEppOp6VKPgEbYMNwK7sUIaegI7XvCY+50pKs1l9GJmMQ5COo64zxk1udSfIg7LFafmLEE2iVuQChRoDstf/ZFkSYiRYYJqnZrEN3jjSRnM7Wo/0RhTFtAx9jIa0RD1IF1eOifVTBkRX6qsIkOWqv1rIqWh1rPQyzpDaiZ63cvF/7xeYvz7QcqjODEYsdUiPxHESJK/TUZcITNilhHKFDecETahijKThWNnEbjrD2+S9m3Nrdfqz/VK46EIowSXcAXX4MIdNOAJmtACBhN4hXdYWIH1Zi2sj1XrllXMXMAfWJ8/xKSNfQ==</latexit>

x1 x2






xg ≥ x1
xg ≥ x2

xg ≤ x1 + x2

xg

¬xg = 1 − xg

0 ≤ x ≤ 1

Computing  is 
equivalent to 
finding  satisfying 
these constraints!

f

x
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Approximation Algorithms from Linear Programs

Vertex cover: 

minimize  


subject to


for all ,

,


for all   


∑
v

xv

v
0 ≤ xv ≤ 1

e = {u, v}
xu + xv ≥ 1

Claim: Any feasible solution that is 
a vertex of the polytope must have 

.

Pf: 

Consider the solutions:





xv ∈ {0,1/2,1}

yv =
xv if xv ∈ {0,1/2,1}
xv + ϵ if xv > 1/2
xv − ϵ otherwise.

zv =
xv if xv ∈ {0,1/2,1}
xv − ϵ if xv > 1/2
xv + ϵ otherwise.

 are valid solutions to 
the program. If 

, then 
, yet , 

so  cannot be a vertex.

y, z

xv ∉ {0,1/2,1}
y ≠ z x = (y + z)/2

x
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Approximation Algorithms from Linear Programs

Vertex cover: 

minimize  


subject to


for all ,

,


for all   


∑
v

xv

v
0 ≤ xv ≤ 1

e = {u, v}
xu + xv ≥ 1

Claim: Any feasible solution that is 
a vertex of the polytope must have 

.


Consequence: Let  be a solution 
that is a vertex of the polytope. If 
we pick the set of vertices 


Let , this is a valid 
vertex cover that is at most twice 
as large as the best one!


xv ∈ {0,1/2,1}

x

S = {v : xv > 0}
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Approximation Algorithms from Linear Programs

Set cover: 

minimize  


subject to


for all ,

,


for all   


∑
S

xS

S
0 ≤ xS

i ∈ {1,…, n}

∑
i∈S

xS ≥ 1

Dual program: 

maximize  


subject to


for all ,

,


for all   


∑
i

yi

i
0 ≤ yi

S

∑
i∈S

yi ≤ 1
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Approximation Algorithms from Linear Programs

Recall greedy algorithm: 

In each step, pick the set that 
covers the most remaining 
elements.


Let , if  was covered 
in a group of  elements.

Let .


zi = 1/k i
k

Hr = 1 + 1/2 + … + 1/r

Dual program: 

maximize  


subject to


for all ,

,


for all   


∑
i

yi

i
0 ≤ yi

S

∑
i∈S

yi ≤ 1

Claim:  is a valid solution to 
dual.

Pf:

Without loss of generality, 
suppose , and 
the elements are covered in order. 
Then we see:







. 

z/Hn

S = {1,2,…, k}

∑
i∈S

zi

≤ (1/k + 1/(k − 1) + … + 1)
≤ Hn
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Approximation Algorithms from Linear Programs

Recall greedy algorithm: 

In each step, pick the set that 
covers the most remaining 
elements.


Let , if  was covered 
in a group of  elements.

Let .


zi = 1/k i
k

Hr = 1 + 1/2 + … + 1/r

Dual program: 

maximize  


subject to


for all ,

,


for all   


∑
i

yi

i
0 ≤ yi

S

∑
i∈S

yi ≤ 1

Claim:  is a valid solution to 
dual.


Consequence:

The dual has value at least the 
size of greedy solution . Since 

, the greedy is 
within  of the optimal 
solution.

z/Hn

/Hn
Hn ≤ O(log n)

O(log n)


