
Some topics
adjacent to
algorithms

1. Quantum Computing

Idea: Harness the quantum nature of the universe to achieve
faster computation.

Classical physics: A bit can be either 0 or 1, or randomly
chosen from a distribution on 0,1.

Quantum physics: A bit can be in a superposition state like
,

Where are complex numbers with .
a0 ⋅ |0⟩ + a1 ⋅ |1⟩

a0, a1 |a0 |2 + |a1 |2 = 1

Quantum physics

A bit can be in a superposition state like ,

with complex numbers such that .

The bit can be measured. The outcome is:

More generally, a quantum state on bits is

, with .

If we measure the first bit, the outcome is is .

a0 ⋅ |0⟩ + a1 ⋅ |1⟩
a0, a1 |a0 |2 + |a1 |2 = 1

Pr[bit = b] = |ab |2 .

n

∑
x∈{0,1}n

ax ⋅ |x⟩ ∑
x∈{0,1}n

|ax |2 = 1

Pr[x1 = b] ∑
x1=b

|ax |2

Quantum Computing

More generally, a quantum state on bits is

, with .

Each quantum computation step is allowed to apply a “unitary operator” (basically a
rotation) to two of the qbits. This induces a rotation of the entire vector in the natural
way.

Quantum algorithm: sequence of such simple unitary operators on pairs of qbits +
measurement.

Prototypical algorithm: Schor’s algorithm for factoring. Factors numbers in polynomial
time, something we do not know how to do with classical algorithms.

n

∑
x∈{0,1}n

ax ⋅ |x⟩ ∑
x∈{0,1}n

|ax |2 = 1

Common misconceptions

1. A quantum computer searches through exponentially many

possibilities at once.

2. A quantum computer would prove P=NP.

3. A quantum computer would speed up many algorithms.

4. We have built a quantum computer.

2. Cryptography

Idea: Harness the fact that algorithmic tasks are difficult to achieve secrecy,
privacy …

Prototypical example: RSA encryption
1. User picks , with prime, and uses this data to pick .

Public key = .

2. To send message to user, send .

3. To decrypt message message compute .

Claim: Any method that can be used to break this can be used to factor

n = pq p, q e, d
(n, e)

m me mod n
(me)d = m mod n

n = pq .

2. Cryptography

Notes:

1. Based on hardness of factoring, discrete log etc

2. Used everywhere by every device.

3. Much of it is provably secure only under assumptions: in

particular if P = NP, most crypto systems can be hacked in
polynomial time.

3. Distributed computing
Idea: processors are in a distributed environment. Some of them are faulty
(will not run algorithm correctly, may even be adversarial). Processors
exchange messages.

Prototypical example: Byzantine agreement
1. All communication is over private channels.
2. One of the processors A wants to send a bit to all others.

3. If A is not faulty, all unfaulty processors should output .
4. Whether or not A is faulty, all unfaulty processors should output same

value.

Solution: There is a protocol achieving this number of faulty processors is at
most , and total number of processors is at least .

n

b
b

t 3t + 1

