
CSEP521: Algorithms November 11, 2022

Midterm

Anup Rao Due: November 21, 2022

Read the fine print1. An algorithm is said to run in polynomial time if it runs in time O(nd)
for some constant d on inputs of size n.

1. (45 points, 5 each) For each of the following problems answer True or False and BRIEFLY
JUSTIFY you answer.

(a) n3.05 = O(n3 log n).
False. n0.05 grows faster than log n, as we discussed in class.

(b) 2n = Ω(22n).
False. For every constant c, as soon as 2n > c, we have c · 22n > 2n.

(c) There is a polynomial time algorithm for deciding whether a graph has an odd length
cycle or not.
True. We can use breadth first search to check whether a graph is bipartite or not, this
is the same algorithm.

(d) If the running time of an algorithm satisfies the recurrence T (n) ≤ 3T (n/2) + n5, then
T (n) = O(n3).
False. The first recursive step itself takes time O(n5).

(e) Suppose an input to the MST problem does not have distinct edge weights. Suppose
there is a cycle in the graph where two of the edges have the heaviest weight. Is it true
that every MST must exclude both of these heavy edges?
False. Consider a cycle where every edge has the same weight.

(f) In an input to the MST problem, if e is the unique lightest edge touching a vertex v,
then e must be part of every MST.
True. This follows from the cut property applied to the vertex v.

(g) There is an O(n1.1) time algorithm for multiplying two n-bit numbers.
True. This can be done using the FFT.

(h) If an undirected graph contains a matching of size k, then it is possible that it also has
a vertex cover of size k − 1
False. Every edge of the matching requires one vertex in the cover to cover it.

(i) You are given an input the set cover problem, with m sets over an n element universe.
You are promised that m > n, and either at most

√
n of the sets can cover the whole

universe, or at least n sets are required. There is a polynomial time algorithm for

1No collaboration on this one. The problems have been carefully chosen for their pedagogical value, and hence
might be similar to those given in past offerings of this course at UW, or similar to other courses at other schools.
Using any pre-existing solutions from these sources, for from the web, constitutes a violation of the academic integrity
you are expected to exemplify, and is strictly prohibited. Most of the problems only require one or two key ideas for
their solution. It will help you a lot to spell out these main ideas so that you can get most of the credit for a problem
even if you err on the finer details. Please justify all answers. Some other guidelines for writing good solutions are
here: http://www.cs.washington.edu/education/courses/cse421/08wi/guidelines.pdf.
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deciding which case is satisfied by the input.
True. Run the algorithm from class, which will either find a set cover of size O(

√
n log n)

or not.

2. (20 points) You are given an n× n checkerboard and a checker. You are allowed to move the
checker from any square x to a square y on the board as long as square y is directly above
x, or y is directly to the left of the square directly above x, or y is directly to the right of
the square directly above x. Every time you make a move from square x to square y, you
earn p(x, y) points, where p(x, y) is an integer (possibly negative) that is part of the input.
Give an algorithm that on input the values p(x, y), outputs the maximum score that can be
achieved by placing the checker on some square on the bottom row and moving the checker
all the way to some square of the top row. The algorithm should run in polynomial time.

Solution. Given any square x on the board, let Sx denote the best score that can be
achieved starting at that square. Then observe that if x is on the top row, Sx = 0. For every
other square x, the maximum square can be obtained by making a valid move to a square in
a row that is higher, and then making the optimal moves from there.

Let us write valid(x) to denote the set of valid squares that you can move to from x. Then
we have that for x not on the top row,

Sx = max
y∈valid(x)

{p(x, y) + Sy}.

The algorithm simply computes these values starting from the top row to the bottom row.
In the description of the algorithm, we shall assume that the square (i, j) is in the i’th row
and j’th column, and that the top row is the 1st row.

Input: Scores p(x, y) for each move (x, y).
begin

for j = 1, . . . , n do
Set S(1,j) = 0.

end
for i = 2, . . . , n do

for j = 1, . . . , n do
Set S(i,j) = maxy∈valid((i,j)){p((i, j), y) + Sy}

end

end
return maxj S(n,j).

end

Algorithm 1: Checkers

Clearly, the algorithm correctly computes Sx for every square on the board. The final output
is then the score achievable from the best starting square. The running time of the algorithm
is O(n2).

3. (15 points) Suppose you are choosing between the following three algorithms:
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• Algorithm A solves the problem by dividing it into five subproblems of half the size,
recursively solves each subproblem, and then combines the solution in linear time.

• Algorithm B solves problems of size n by recursively solving two subproblems of size
n− 1, and then combines the solution in constant time.

• Algorithm C solves the problem by dividing it into nine subproblems of one third the
size, recursively solves each subproblem, and then combines the solutions in quadratic
time.

What are the running times of each of these algorithms?

Solution

• The recurrence for Algorithm A is T (n) = 5T (n/2) + O(n). By the Master theorem, it
runs in time O(nlog2 5).

• The recurrence for Algorithm B is T (n) = 2T (n − 1) + O(1). This algorithm runs in
time O(2n).

• The recurrence for Algorithm C is T (n) = 9T (n/3) + O(n2). By the Master theorem, it
runs in time O(n2 log n).

4. (20 points) Given two strings x1, . . . , xm and y1, . . . , yn, we want to calculate the length
of the longest common substring, namely the largest k for which there are i, j such that
xixi+1 . . . xi+k−1 = yjyj+1 . . . yj+k−1. Show how to do this in time O(mn).

Solution. Denote opt(i, j) as the longest common substrings that starts at xi and yj . Then
we have the following rule:

opt(i, j) =

{
1 + opt(i + 1, j + 1) if xi = yj

0 else.

And the boundary conditions are

opt(i, n) =

{
1 if xi = yn

0 else.

opt(m, j) =

{
1 if xm = yj

0 else.

So we have the following algorithm:
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Input: strings x1, ..., xm and y1, ..., yn
Result: length of longest common strings
Initialize table OPT[m][n]
for i=m,m-1,...,1 do

for j=n,n-1,...,1 do
if i == m or j == n then

OPT [i][j] = (xi == yj)
end
else if xi == yj then

OPT [i][j] = 1 + OPT [i + 1][j + 1]
end
else

OPT [i][j] = 0
end

end

end
return max(OPT [i][j])

Runtime: The loop will use time O(mn). In order to find the maximal value in a array of
size mn, we only need to scan the array and update the value when we find a larger element.
So it will cost O(mn). In total, this will be O(mn).
Correctness: First we prove that the recurrence is correct with induction. For the case when
i = m or j = n, the recurrence just consider all the possible cases and hence correct. Assume
we have already prove for i > r or j > s. Now consider the case when i = r. For OPT [r][j],
if xr 6= yj , then OPT [r][j] can only be 0. If xr == yj , since the common strings starts at xr
and yj , the length must be 1 plus the length of the rest, which will be the common strings
starts at xr+1 and yj+1. By induction OPT [r+1][j+1] will be the correct value, so OPT [r][j]
is also correct. Simialr argument can performed for j = s. So by induction OPT [i][j] will be
computed correctly as the length of the longest common strings that starts at xi, yj . Then
the algorithm just returns the maximal value.
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