
9

Circuits and Proofs

ALT H O U G H C O M M U N I C AT I O N C O M P L E X I T Y ostensibly stud-
ies the amount of communication needed between parties that are far
apart, it is deeply involved in our understanding of many other concrete
computational models and discrete systems. In this chapter, we discuss
applications of communication complexity to Boolean circuits and
proof systems.

Boolean Circuits
BO O L E A N C I R C U I T S A R E T H E M O S T N AT U R A L model for com-
puting Boolean functions. A Boolean circuit is a directed acyclic graph
whose vertices, often called gates, are associated with either Boolean
operators or input variables. Every gate with in-degree 0 corresponds to
an input variable, the negation of an input variable, or a constant bit. All
other gates compute either the logical AND (denoted by the symbol ∧)
or the OR (denoted by the symbol ∨) of the inputs that feed into them.
Usually, the fan-in of the gates is restricted to being 2. We adopt this
convention, unless we explicitly state otherwise. See Figure 9.1 for an
illustration.

Figure 9.1 A circuit
computing the parity
x1 ⊕ x2 ⊕ x3. This circuit has
size 15 and depth 4.

Every gate v in a circuit naturally computes a Boolean function fv of
the inputs to the circuit. We say that a circuit computes a function f if
f = fv for some gate v in it.

Every circuit is associated with two standard complexity measures.
The size of the circuit is the number of gates. It corresponds to the
number of operations the circuit performs. The depth of the circuit is the
length of the longest directed path in the underlying graph. The depth
corresponds to the parallel time it takes the computation to end, using
many processors. One may consider circuits

where every gate has fan-in 2
and computes an arbitrary
function of its inputs. This
only changes the size and
depth of the circuit by a
constant factor.

We thus get a measure of computational complexity – circuits have
costs and functions have complexities. Every Boolean function f can
be computed by a Boolean circuit. The circuit complexity of f is the
size of the smallest circuit that computes it. Understanding the circuit
complexity of interesting functions is a fundamental problem in com-
puter science.

Boolean circuits can efficiently simulate algorithms. Any function
that can be computed by an algorithm in T (n) steps can also be

157

158 Circuits and Proofs

computed by circuits of size approximately T (n). So, to prove lower
bounds on time complexity, it suffices to prove that there are no small
circuits that can carry out the computation.For example, a

super-polynomial lower bound
on the circuit size of an NP

problem would imply that
P � NP, resolving the most
important open problem in
computer science.

Every Boolean function f : {0, 1}n → {0, 1} can be computed by
a circuit1 of depth n and size at most O(2n/n). Counting arguments

1 Lupanov, 1958.

imply that almost every function requires circuits of exponential size.2

2 Shannon, 1949.

The number of circuits of size
s is at most 2O(s log s) . The
number of functions f is 22n .
So, if s � 2n/n, one cannot
hope to compute every
function with a circuit of
size s.

However, we do not know of any emphexplicit function for which we
can prove even a super-linear lower bound.

We do not yet understand in circuit complexity is the power of depth:

Open Problem 9.1 Can every function that is computable using circuits
of size polynomial in n be computed by circuits of depth O(log n)?

Counting arguments imply
that there is a constant ε such
that the set of functions
computable by size s log s

circuits is strictly larger than
the set of functions
computable by size εs circuits.
Similarly, counting arguments
show that circuits of depth d

compute a bigger set of
functions than those
computable in depth εd.

We now describe a general connection between circuit complexity
and communication complexity. We focus on two restricted families
of circuits. A formula is a circuit whose underlying graph is a tree.
Equivalently, the fan-out of every gate is 1. Every circuit of depth d
can always be turned into a formula whose size is at most 2d, and
depth is at most d. A monotone circuit is a circuit that does not use
negated variables. A monotone circuit computes a monotone function;
f (y) ≥ f (x) whenever yi ≥ xi for all i.

Several restricted classes of
circuits are not discussed in
this book. We focus on
methods related to
communication complexity.

Karchmer-Wigderson Games
EV E RY BO O L E A N F U N C T I O N defines a communication problem
via its Karchmer-Wigderson game.3 In the game defined by the function

3 Karchmer and Wigderson,
1990.

f : {0, 1}n → {0, 1}, Alice gets x ∈ f −1(0), Bob gets y ∈ f −1(1), and
they seek to find i ∈ [n] such that xi � yi . When f is monotone, we
define the monotone Karchmer-Wigderson game as follows: Alice and
Bob want to find an index i such that xi < yi .

In the Karchmer-Wigderson
game, Alice and Bob are
computing a relation rather
than a function – there may be
many indices i with the
property they seek.

The basic observation is that circuit-depth is equivalent to communi-
cation complexity, as the following two lemmas show.

Lemma 9.2 A circuit of depth d computing f yields a length d deter-
ministic protocol for the associated game. If the circuit is monotone, the
protocol solves the monotone game.

Proof The construction of the protocol is by induction on the depth of
the circuit. If the top gate in the circuit is an AND gate (f = g ∧ h),
then either g(x) = 0 or h(x) = 0, while g(y) = h(y) = 1. Alice can
announce whether g(x) or h(x) is 0, and the parties can continue the
protocol using g or h. Similarly if f = g∨ h, Bob can announce whether
g(y) = 1 or h(y) = 1, and the parties then continue with either g or h. If
f is the negation of g, then the parties can continue the protocol using g,
without communicating at all. If f is the ith input variable, the parties
identify an index i for which xi � yi .

When the circuit is monotone, the same simulation finds an index i
such that xi = 0 and yi = 1 because there are no negated variables.

Monotone Circuit-Depth Lower Bounds 159

The topology of the circuit determines the topology of the protocol
tree. Every AND gate corresponds to a node in the protocol tree where
Alice speaks, every OR gate corresponds to a node where Bob speaks,
and every input gate corresponds to a leaf in the protocol tree. Thus, a
circuit of depth d gives a protocol of length at most d. �

If the function is constant, the
Karchmer-Wigderson game is
not well defined. The
circuit-size is 1, and the
depth is 0.

Lemma 9.3 If the Karchmer-Wigderson game for a function f can be
solved with d bits of communication, then there is a circuit of depth d
computing f . If f is monotone, and the monotone game can be solved
with d bits of communication, then there is a monotone circuit of depth
d computing f .

Proof We shall prove, by induction on d, that for any nonempty sets
A ⊆ f −1(0) and B ⊆ f −1(1), the following holds. If there is a protocol
such that whenever x ∈ A is given to Alice and y ∈ B is given to Bob,
they can exchange d bits to find i such that xi � yi , then there is a circuit
of depth d computing a Boolean function g with g(A) = 0 and g(B) = 1.
When A = f −1(0) and B = f −1(1), this implies the lemma.

When d = 0, the protocol must have a fixed output i, and so we must
have that xi � yi for every x ∈ A and y ∈ B. Thus, setting g to be the
ith variable or its negation works.

Suppose d > 0 and Alice speaks first. Her message partitions the
set A into two disjoint sets A = A0 ∪ A1, where A0 is the set of inputs
that lead her to send 0 as the first message, and A1 is the set of inputs
that lead her to send 1. If one of A0 or A1 is empty, then we can ignore
the first message, and the proof is complete. So, both A0 and A1 are
nonempty. By induction, the two children of the root correspond to
Boolean functions g0 and g1, with g0(A0) = g1(A1) = 0 and g0(B) =
g1(B) = 1. Consider the circuit that takes the AND of the two gates
obtained inductively and denotes the function it computes by g. For all
y ∈ B, we have g(y) = g0(y) ∧ g1(y) = 1. For all x ∈ A, either x ∈ A0
or x ∈ A1. In either case g(x) = g0(x) ∧ g1(x) = 0. If the first bit of the
protocol is sent by Bob, the proof is similar, except we take the OR of
the gates obtained by induction.

If we are working with the monotone game, the resulting circuit is
monotone. �

The Karchmer-Wigderson connection between circuit complexity and
communication complexity is a powerful tool for proving lower bounds
on circuit complexity.

Monotone Circuit-Depth Lower Bounds
A matching in a graph is a collection of disjoint edges. One of the
most studied combinatorial problems is finding the largest matching in
a graph. Today, we know of several efficient algorithms for solving this
problem.4 4 Kleinberg and Tardos, 2006.

160 Circuits and Proofs

We focus on the following decision problem. Given a graph G on n
vertices, define

Match(G) =
⎧⎪⎨⎪⎩1 if G has a matching of size at least n/3 + 1,

0 otherwise.

Because there are polynomial time algorithms for finding matchings,
one can obtain polynomial sized circuits that compute Match. However,
we do not know of any logarithmic depth circuits that compute Match.
Here we show that there are no monotone circuits of depth o(n) comput-
ing Match.55 Raz and Wigderson, 1992.

Match is a monotone function. Theorem 9.4 Every monotone circuit computing Match has depthΩ(n).

By Lemma 9.3, it is enough to prove a lower bound on the communi-
cation complexity of the corresponding monotone Karchmer-Wigderson
game. In the monotone matching game, Alice gets a graph G with
Match(G) = 1 and Bob gets a graph H with Match(H) = 0. Their goal
is to find an edge that is in G, but not in H.

Theorem 9.5 Any randomized protocol solving the matching game
must communicate Ω(n) bits.

Proof The theorem is proved by reduction to the disjointness lower
bound proved in Theorem 6.19. We shall show that if there is a pro-
tocol for the monotone matching game with length c, then there is a
randomized protocol with length O(c) solving the disjointness problem
on a universe of size m = Ω(n). By Theorem 6.19, this implies that
c ≥ Ω(n).

Suppose Alice and Bob get inputs X ⊆ [m] and Y ⊆ [m]. They encode
X and Y as two graphs GX and HY on the vertex set [3m + 2]. They use
public randomness to permute the vertices of the graphs and feed them
into the protocol for the monotone matching game. Figure 9.2 shows an
example for GX and HY . These graphs are constructed as follows:

Alice builds GX: For each i ∈ [m], the graph GX contains the edge
{3i, 3i − 1} if i ∈ X and has the edge {3i, 3i − 2} if i � X . In addition,
GX contains the edge {3m + 1, 3m + 2}.
The construction ensures that GX contains a matching of size m + 1.

Bob builds HY : For each i ∈ [m], if i ∈ Y then Bob connects 3i − 2
to all the other 3m + 1 vertices of the graph, and if i � Y then Bob
connects 3i to all the other vertices.
By construction, there are m vertices so that every edge of HY touches
one of these vertices (the gray vertices in Figure 9.2). So, HY does not
contain a matching of size m + 1.

If X and Y are disjoint, the outcome of the protocol must be the
edge corresponding to {3m + 1, 3m + 2}. On the other hand, if X and
Y intersect in k > 0 elements, then there are exactly k + 1 edges in GX

that are not in HY .

Monotone Circuit-Depth Hierarchy 161

Figure 9.2 A schematic
description of GX and HY .

Because the graph is permuted uniformly at random before the pro-
tocol is executed, and the protocol for the game does not know the
permutation, the outcome of the protocol is equally likely to be one of
these k + 1 edges. Indeed, let e and e′ be two of these k + 1 edges, and
let σ be a permutation of the vertices such that σ maps the edge e to the
edge e′. For every permutation τ, if the protocol outputs the edge τ(e)
when it samples τ, then it outputs τ(e′) when it samples τ ◦ σ.

When the sets are disjoint, the protocol outputs the edge correspond-
ing to {3m + 1, 3m + 2}. When the sets are not disjoint, the output cor-
responds to {3m + 1, 3m + 2} with probability at most 1/2. Repeating
this experiment a constant number of times, the parties are able to solve
disjointness with probability of error at most 1/3. �

Monotone Circuit-Depth Hierarchy
Throughout this section, we
work with circuits of
arbitrarily large fan-in.

BO O L E A N C I R C U I T S C A N B E G R A D E D by their depth. It is nat-
ural to conjecture that for constant k, circuits of depth k + 1 are strictly
more powerful than circuits of depth k. Communication complexity
allows us to prove this in the monotone setting. We do not know how to prove

a similar statement for general
circuits.

Let F = Fn,k be the full AND-OR formula with fan-in n and depth k.
All noninput gates in F have fan-in exactly n. The gates of odd depth
are OR gates, and the gates of even depth are AND gates. Every input
gate is labeled by a distinct unnegated variable. The size of F is O(nk). We think of F both as a

formula and as a function.We prove that any monotone circuit of smaller depth computing F
must have exponential size.

Theorem 9.6 Any monotone circuit of depth k − 1 that computes F must
have size at least 2Ω(n/k) .

Proof Assume that there is a monotone circuit of size s and depth k − 1
computing F. The circuit yields a protocol for the monotone Karchmer-
Wigderson game with k − 1 rounds and length at most O(k log s).

It thus suffices to prove that the monotone game requires communica-
tion at least n/16− k. We prove this by reduction to the pointer-chasing
problem, that we studied in Chapter 6. In pointer-chasing, Alice and Bob
are given x, y ∈ [n]n and want to compute z = z(k), where z(0) = 1,
and z(1), z(2), . . . are inductively defined using the rule

162 Circuits and Proofs

z(i) =
⎧⎪⎨⎪⎩xz(i−1) if i is odd,
yz(i−1) if i is even.

Given inputs x, y to the pointer-chasing problem, the inputs x ′, y′ in
{0, 1}[n]k to F are constructed as follows. Every variable in the formula
can be described by a string in v ∈ [n]k . We say that v is consistent with
x if

vi =
⎧⎪⎨⎪⎩x1 when i = 1,

xvi−1 when i is odd and not 1.

We say that v is consistent with y if vi = yvi−1 when i is even. Alice sets
all the coordinates of x ′ that are consistent with her input to be 0, and
all other coordinates to be 1. Bob sets all the coordinates of y′ that are
consistent with his input to be 1, and all other coordinates to be 0.

We now prove that F (x ′) = 0 and F (y′) = 1. We focus on F (x ′);
a similar argument works for F (y′). Every a gate of depth d in the
formula corresponds to a vector in [n]d. We claim that every gate that
corresponds to a vector that is consistent with x evaluates to 0 on x ′.
This is true for the input gates at depth k because that is how we set the
variables in x ′. For gates at depth d < k, if the gate is an AND gate then
one of its children is consistent with x and so evaluate to 0, and if the
gate is an OR gate then all of its children are consistent with x and so
evaluate to 0.

For every x, y, there is a unique input gate v that is consistent with
both x and y. This gate is the output v = z(k) of the pointer-chasing
problem. The only place where x ′ is 0 and y′ is 1 is the vth entry.

Any protocol for the monotone Karchmer-Wigderson game, therefore,
gives a protocol solving the pointer-chasing problem. By Theorem 6.18,
the communication of the game must be at least n/16 − k. �

Boolean Formulas
FO R M U L A S C O R R E S P O N D T O C O M P U TAT I O N S that use each
sub-computation exactly once. One immediate consequence of the
Karchmer-Wigderson connection is a sharp lower bound on the formula-
size of parity. In Chapter 1, we proved that solving the Karchmer-A similar lower bound holds

for the circuit-depth of
majority. See Exercise 1.4.

For example, parity has
linear-size formulas using ⊕
gates, but requires
quadratic-size formulas using
AND, OR and NOT gates.

Wigderson games for parity requires at least 2 log n − O(1) bits of
communication. This shows that its circuit-depth is at least 2 log n −
O(1). The formula complexity of parity is therefore Θ(n2).

When it comes to formulas, the choice of basis can affect the for-
mula size by more than a constant factor. Nevertheless, one can prove
super-linear lower bounds even when allowing each gate to compute an
arbitrary function of two bits.

Consider the function Distinct : [2n]n+1 → {0, 1}, defined as

Distinct(x1, . . . , xn+1) =
⎧⎪⎨⎪⎩1 if x1, . . . , xn+1 are distinct,

0 else.

Boolean Formulas 163

Figure 9.3 A formula F and
the tree Ti that corresponds to
the input gates of xi . Shaded
input gates correspond to xi .

Distinct is a Boolean function that depends on O(n log(n)) bits. We shall
prove:6 6 Neciporuk, 1966; and

Klauck, 2007.
Theorem 9.7 Any formula computing Distinct must have at least n2 −
O(n log n) input gates.

We start by proving a simple communication complexity lower bound.
Suppose Alice is given n numbers y1, . . . , yn ∈ [2n], and Bob is given
z ∈ [2n]. They want to compute Distinct(y1, . . . , yn, z).

Lemma 9.8 If there is a 1-round protocol where Alice sends Bob t
bits and Bob outputs Distinct(y1, . . . , yn, z), then t ≥ log

(
2n
n

)
≥ 2n −

O(log n).

Proof It is enough to consider the case when y1, . . . , yn are distinct
elements. In this case, Alice’s message must determine S = {y1, . . . , yn},
or else Bob will not be able to compute Distinct. This is because if S � S′

are two sets of size n that are consistent with Alice’s message, then there
must be z ∈ S such that z � S′. The element z is distinct from S′, but
not from S.

The number of bits transmitted by Alice must, therefore, be at least
log
(

2n
n

)
≥ 2n −O(log n). � The middle binomial

coefficient is maximal, so(2n
n

)
≥ 22n

n+1 . A more accurate
bound using Stirling’s
approximation gives(2n
n

)
= Θ(22n

√
n

).

We are ready to prove the formula lower bound:

Proof of Theorem 9.7 Suppose there is a formula F computing Distinct
using s gates. Each input gate in the formula reads a bit of one of the
numbers xi . For each i ∈ [n + 1] we define the tree Ti as follows (see
Figure 9.3). Every vertex of Ti corresponds to a gate in F. Start by
discarding all the gates in F that do not depend on xi . In the graph that
remains, iteratively replace every gate that has only one input feeding
into it with an edge connecting its input to its output.

Now, suppose Alice knows all of the input numbers except xi , Bob
knows xi , and Alice and Bob want to compute Distinct(x1, . . . , xn+1).

164 Circuits and Proofs

They can use the tree Ti to carry out the computation efficiently. Bob
already knows the values at the leaves of Ti . Every gate v in Ti computes
a Boolean function fv , which depends on gates in Ti and some number
of Alice’s inputs. There are 222

= 24 Boolean functions that depend
on two variables, so Alice can send 4 bits to Bob to indicate which of
these functions he should use to compute fv (x1, . . . , xn+1) using the
two inputs that correspond to gates of Ti . Using this information, Bob
can compute Distinct. The overall communication is at most four times
the number of vertices in Ti .

Because F has only s gates, there must be some i for which Ti has at
most � = s/n leaves. If m denotes the number of vertices of Ti , and e
the number of edges in Ti , then we must have e = m − 1 because Ti is
a tree. Counting the number of edges by adding up the degrees of the
vertices, we have

2(m − 1) = 2e ≥ 3(m − � − 1) + �.
So, m ≤ 2� + 1 ≤ 2s/n + 1.

By Lemma 9.8, we get 2s/n + 1 ≥ 2n − O(log n), proving the
theorem. �

Formulas with Arbitrary Gates
Communication complexity allows us to prove nontrivial lower bounds
even when gates are allowed to compute arbitrary functions of a lin-
ear number of variables.7 Suppose we want to express a function f :7 Hrubes and Rao, 2015.
{0, 1}n → {0, 1} as

Counting arguments show that
most functions f require
k = Ω(n).

f = g(g1, . . . , gk),
where each of the functions g1, . . . , gk depends on at most 2n/3 input
bits. What is the minimum k required?

We can represent Distinct in this form with k = O(log n).8 Nev-8 To see this, let S1, . . . , Sk
⊂ [n] be sets of size n/2 so
that that for every i, j ∈ [n],
there is some set of the
sequence that contains both
i, j. One can show that a
random choice of O(log n)
sets satisfies this property with
positive probability. Use these
sets to construct a formula. For
each i, let gi be the function
that reads the numbers x� for
� ∈ Si , and outputs 1 if and
only if these numbers are
distinct. Let g be the OR

function.

ertheless, the closely related scrambled distinctness function requires
k ≥ nΩ(1) . Assume n is a power of 2. For a subset S of [n log(2n)] of size

It remains an open problem to
find an explicit function for
which k = Ω(n).

log(2n), and b ∈ {0, 1}n log(2n) , define SDistinct(S, b) as follows. Use

The input to SDistinct can be
encoded using
n log(2n) + log2 n bits.

the coordinates of S in b to define a number z ∈ [2n]. Use the remaining
bits of b to define y1, . . . , yn−1 ⊆ [2n]. Output Distinct(y1, . . . , yn−1, z).

Theorem 9.9 SDistinct(S, b) requires k ≥ nΩ(1) .

Proof As in the formula lower bound, we shall appeal to Lemma 9.8.
Suppose we can write SDistinct as g(g1, . . . , gk), where each of the gates
gi depends on at most 2/3rds of the input variables.

We claim that if k is small, there must be some S for which every gate
gi reads at most 4

5 log(2n) of inputs that correspond to S. Indeed, sup-
pose we pick the elements of S independently and uniformly at random.
For each i ∈ [k], the expected number of coordinates of S read by gi
is at most 2

3 log(2n). By the Chernoff-Hoeffding bound, the probability
that more than 4

5 log(2n) of the coordinates are read in gi is at most
e−Ω(log(2n)) = n−γ, for some constant γ > 0. The probability that the
log(2n) coordinates sampled are not all distinct is at most log2(2n)/n.

Boolean Depth Conjecture 165

Overall, if k < nγ/2, then k · n−γ + log2(2n)/n < 1, and there is a set
S satisfying the properties we want.

Given such a set S, Alice and Bob can use the circuit to obtain a proto-
col solving the distinctness problem. Bob sets the coordinates of b in S
according to his input, and Alice sets the remaining coordinates accord-
ing to her input. Each gate gi depends on at most 4

5 log(2n) of Bob’s bits.
There are 2O(n4/5) Boolean functions that depend on 4

5 log(2n) bits, so
Alice can send Bob k ·O(n4/5) bits to describe the function Bob should
evaluate to compute each gi .

Finally, by Lemma 9.8, we must have that

k ≥ Ω(min{nγ, n1/5}).

�

Boolean Depth Conjecture
CA N W E E F F I C I E N T LY balance circuits? Can every polynomial
sized circuit be simulated by a circuit of logarithmic depth? Recall that
we showed how to balance a protocol tree in Chapter 1. See Exercise 9.3.

This seemingly simple problem remains open, despite much effort to
resolve it. Here we discuss an approach9 for proving a negative answer. 9 Håstad and Wigderson, 1990;

Karchmer et al., 1995;
Edmonds et al., 2001;
Gavinsky et al., 2014; and
Dinur and Meir, 2016.

The approach is based on direct-sum in communication complexity. Its
goal is to prove that there are functions that can be computed using poly-
nomial sized circuits but cannot be computed by a circuit of logarithmic
depth.

The idea is to start with a function f : {0, 1}t → {0, 1} that requires
circuits of depth Ω(t). A random function requires such depth with high
probability. The function we are interested in is obtained from f by
composition. Given functions h : {0, 1}t → {0, 1} and g : {0, 1}k →
{0, 1}, define their composition h ◦ g : {0, 1}tk → {0, 1} by

h ◦ g(x1, . . . , xt) = h(g(x1), . . . , g(xt)),

where each xi is a k-bit string. Define f ◦t as the t-fold composition of
f with itself. The function f ◦t can be computed naively by a circuit of
size O(n2). Indeed, f can be computed using a circuit of size O(2t). To
compute f ◦t we need to evaluate f at most O(tt) times. We obtain a
circuit computing f ◦t with O(tt · 2t) ≤ O(n2) gates.

It is natural to conjecture that this naive circuit has essentially smallest
possible depth. Namely, that the depth complexity of f ◦t is at leastΩ(t2).
This is much larger than O(log n).

If there is a function f as above for which for all k < t, the circuit-
depth of f ◦ f ◦k−1 must be at least εt more than the circuit depth of
f ◦k−1, then the circuit-depth of f ◦t is at least εt2 " t log t = log n.
In other words, if there is such an f , then there is a Boolean function
depending on n variables that can be computed using O(n2) gates, but
cannot be computed with a circuit of depth O(log n).

In terms of communication complexity, all that is needed is an exam-
ple of a function f for which the communication complexity of the

166 Circuits and Proofs

Karchmer-Wigderson game of f ◦k is at least εt larger than the commu-
nication complexity of the game of f ◦(k−1) . This looks quite similar to
understanding the direct-sum question in communication that we stud-
ied in Chapters 1 and 7. The ideas we discussed there, unfortunately, do
not seem to apply in this situation.

Proof Systems
PR O O F S Y S T E M S P R O V I D E A F O R M A L F R A M E W O R K for pro-
ving theorems and for studying the complexity of proofs. A proof system
is a specific language for expressing proofs. It consists of a set of rules
that allow one to logically derive theorems from axioms. The study of
proof systems has led to many interesting results, including Gödel’s
famous incompleteness theorem.1010 Gödel, 1931.

Resolution Refutations
TH E S I M P L E S T proof system is resolution.11 It allows us to refute11 Robinson, 1965.
Boolean formulas expressed in conjunctive normal form (CNF). A proof
in resolution shows that a CNF formula cannot possibly be satisfied.Some terminology: A literal is

a variable or its negation. A
clause is an expression of the
form C =

∨
j �j where each

�j is a literal. We assume that
each variable occurs at most
once in a clause. A CNF
formula is an expression of the
form F = C1 ∧C2
∧ . . . ∧Cm where Ci is a
clause.

Let us start with an example. Consider the formula

F =(x2 ∨ x1) ∧ (¬x2 ∨ x1) ∧ (¬x1 ∨ x3 ∨ ¬x4)

∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3).

The formula F cannot be satisfied by any Boolean assignment. To prove
that the formula is unsatisfiable, we repeatedly use the resolution rule.
The rule derives a clause that must be true if two other clauses are both
true:

a ∨ B

¬a ∨C

⎫⎪⎬⎪⎭ ⇒ B ∨C,

where a is a variable, B, C are clauses and B ∨C is the derived clause
obtained by including all the literals in B and C. This rule is sound.
Namely, if both a ∨ B and ¬a ∨C are true then at least one of B or C
must be true. The resolution refutation shown in Figure 9.4 repeatedly
applies this rule to prove that F cannot be satisfied.

A resolution refutation is a sequence of clauses. The sequence starts
with the clauses of the CNF formula. Each new clause is derived from
two previously derived clauses using the resolution rule. The proof
ends when the empty clause is derived. The empty clause represents a
contradiction.

One can think of a resolution refutation as a directed acyclic graph,
like a circuit. The initial clauses correspond to input gates, and the inter-
mediate clauses obtained from the resolution rule correspond to the

Resolution Refutations 167

Figure 9.4 A refutation of F .
In each step, two clauses are
combined to give a new clause
that must be true. The final
step produces an empty clause,
which represents a
contradiction.

noninput gates. A refutation is said to be tree-like if every derived clause
is used only once. Tree-like proofs are the analog of Boolean formulas
in proof complexity.

The problem of understanding whether a Boolean formula is satisfi-
able is a central problem because of its connection12 to the complexity 12 Wikipedia, 2016b.
classes NP and coNP. The best solvers known today try to find satisfying
assignments while simultaneously trying to refute formulas obtained
after partial assignments. It is important, therefore, to classify the kinds
of formulas can be efficiently refuted. P = coNP if and only if there

is a proof system in which
every unsatisfiable Boolean
formula can be refuted in a
polynomial number of steps.

To study the power of a given proof system, like resolution, we need
to a family of formulas of growing complexity. A basic example of such
a sequence is the pigeonhole principle.

The Pigeonhole Principle
The pigeonhole principle states that if n pigeons are placed in n − 1
holes, then some hole must contain at least two pigeons. One can use
the principle to construct a sequence of unsatisfiable Boolean formulas.
For i ∈ [n] and j ∈ [n− 1], we have the variable xi,j which indicates that
the ith pigeon is in the jth hole. Define the following n + 1 formulas:

Pi =
∨

j∈[n−1]

xi,j for all i ∈ [n] Pigeon i must be in some hole.

H =
∧

i<i′∈[n]
j∈[n−1]

(¬xi,j ∨ ¬xi′,j). Each hole contains at most
one pigeon.

The pigeonhole principle states that

P = H ∧
∧
i

Pi

is not satisfiable.
How hard is it to prove that P is unsatisfiable? If one uses resolution,

it is very hard.13 13 Haken, 1985; and Beame
and Pitassi, 1996.

168 Circuits and Proofs

Theorem 9.10 Any resolution refutation of the pigeonhole principleThe proof actually shows that
an exponential number of
steps are required in any proof
system where each step
derives a clause using any
derivation rule from two
clauses!

must involve 2Ω(n) derivation steps.

We give the proof of this theorem, even though it is not directly
related to communication complexity. It will help us get a feel for the
basic notions in proof complexity. Later, we discuss connections of
proof complexity to communication complexity.

A key idea in the proof is to give the proof system even more power.
We allow the proof to assume the following axiom for free.

Axiom 9.11 Each hole contains exactly one pigeon, and the n − 1
pigeons that are in the holes are distinct.

In other words, we only consider assignments to the variables that
satisfy this axiom. Adding an axiom can only make it easier to derive a
contradiction. Axiom 9.11 implies that for each i, j,H is implied by Axiom 9.11.

¬xi,j ⇔
∨
i′�i

xi′,j .

This allows us to replace every negated variable in the proof with a
disjunction of unnegated variables.

It is no loss of generality to assume that 4 divides n. If this is not the
case, replace n with a nearby multiple of 4. Consider any refutation of P
that derives s clauses. Let C be one of the clauses derived in the proof.
We say that C is big if there is a set S ⊂ [n] of size |S | ≥ n/4 such that
for each i ∈ S the number of j’s so that C contains xi,j is at least n/4.

Let us see how a random assignment affects the refutation. Pick n/4
of the pigeons uniformly at random, and randomly assign them to n/4
different holes. If pigeon i is assigned to hole j in this process, then we
set xi,j = 1, we set xi′,j = 0 for all i′ � i, and xi,j′ = 0 for all j ′ � j. This
makes sure that the relevant pigeons and holes are not involved with any
of the remaining holes and pigeons.

After this assignment to the variables, n/4 of the pigeon clauses
become true. Moreover, several variables disappear, and the formula
becomes equivalent to the corresponding formula for 3n/4 pigeons and
3n/4 − 1 holes. The resolution refutation must still derive a contradic-
tion.

Claim 9.12 One of the big clauses must survive the assignment.

Proof Consider the refutation of P after the random assignment. Say
that a clause has pigeon complexity w if there is a set S ⊂ [n] of size w

such that ∧
i∈S

Pi ⇒ C,The implication is allowed to
use Axiom 9.11.

yet no smaller set S has this property.
The contradiction can only be derived from all 3n/4 pigeon clauses

that remain because one can satisfy any strict subset of those clauses

Resolution Refutations 169

with some assignment to the variables. So, the empty clause in the
proof has pigeon complexity at least 3n/4. Because the empty clause
is derived from two clauses, one of the clauses used to derive the
contradiction must have pigeon complexity at least 3n/8. Continuing
in this way, we obtain a sequence of clauses in the proof, where each
clause requires at least half as many pigeon clauses as the previous one.
Because the clauses of P have pigeon complexity at most 1, there must
be a clause C in this sequence that has pigeon complexity at least n/4 Because n is a multiple of 4.
and at most n/2 − 1.

Let S ⊂ [n] be the minimal set of pigeon clauses that imply C, and
let i ∈ S. Because S is minimal, there must be an assignment x ′ to
all the variables where

∧
i′ ∈S−{i } Pi′ is true, yet C is false. This assign-

ment places all of the pigeons of S into holes, except for the ith pigeon.
Suppose j is a hole that did not receive a pigeon during the random
assignment, and does not receive a pigeon from S in x ′. We claim that
C contains the variable xi,j . By Axiom 9.11, every hole gets a pigeon in
all the assignments under consideration. So, there is a pigeon i0 � S
that gets mapped to hole j in this assignment—x ′i0,j = 1. Consider
what happens when we change the assignment by setting x ′i0,j = 0 We remove the pigeon i0 from

hole j and put i into hole j.and x ′i,j = 1, and leave the rest of the variables as they are. Doing so
must make C true because

∧
i′ ∈S Pi′ = 1 in the assignment. Because

C is a disjunction of unnegated variables, this can only happen if C
contains xi,j .

Thus, for each i ∈ S, there must be at least

n − 1 − n/4 − (n/2 − 1) = n/4

values of j for which xi,j is in the clause C. So, not only is C big, it is
big even after the random assignment. �

Claim 9.13 If a clause C is big, then the probability that C survives the
random assignment is at most

(
63
64

)n/8
.

Proof Consider what happens when the first pigeon is assigned to a
hole. The probability that the pigeon is one of the n/4 pigeons relevant
to C is at least 1/4. The probability that it is assigned to one of the
n/4 holes that would imply C is at least 1/4. So the probability that C
becomes true after the first pigeon is assigned to a hole is at least 1/16.
Continuing in this way, we see that for each of the first n/8 pigeons
that we assign to a hole in the random assignment, there are at least
n/4− n/8 = n/8 pigeons, which if assigned to n/4− n/8 = n/8 holes
would lead to the clause becoming true. Thus, the probability that C
survives the first n/8 assignments of pigeons to holes is at most(

1 − (n/8) · (n/8)
n2

)n/8
=

(
63
64

)n/8
.

�

170 Circuits and Proofs

We are ready to prove the theorem:

Proof of Theorem 9.10 Suppose toward a contradiction that the refuta-
tion of P has less than

(
64/63

)n/8 clauses. By Claim 9.13, there is a
partial assignment of the pigeons to holes such that every big clause
does not survive. On the other hand, by Claim 9.12, at least one big
clause must survive. �

Cutting Planes
A S T R O N G E R P R O O F S Y S T E M than resolution can be obtained by
reasoning about linear inequalities. Clauses are converted into linearThe clause a ∨¬b ∨ c can be

viewed as asserting that the
Boolean variables a, b, c
satisfy the linear inequality

−a + b − c ≤ 0.

inequalities, and the rules allow to combine two linear inequalities to
get a new one.

The proof system operates on linear inequalities of the form

〈c, x〉 ≤ t

where x is an n-bit vector, c is an n-dimensional vector with integer coef-
ficients, and t is a rational number. Because the variables are Boolean,
we allow the proof to use the inequalities xi ≤ 1 and −xi ≤ 0 for free.
There are two type of rules in the proof system. For any nonnegative
rationals α, α′, we can take a linear combination of two inequalities to
derive

〈c, x〉 ≤ t

〈c′, x〉 ≤ t ′
⎫⎪⎬⎪⎭ ⇒ 〈αc + α′c′, x

〉 ≤ αt + α′t ′,

as long as αc + α′c′ is a vector of integers. We also allow the rounding
rule:

〈c, x〉 ≤ t ⇒ 〈c, x〉 ≤ �t�.

Namely, we can replace t with the largest integer that is at most t. This
rule is sound because the left-hand side is always an integer.

The proof system allows us to refute a collection of linear inequalities
by deducing the contradiction 1 ≤ 0. Cutting planes can efficientlyCutting planes is complete in

the sense that every collection
of inequalities that has a
solution over Rn but does not
have a solution over Zn can
be refuted in it.

simulate resolution, line-by-line:

Lemma 9.14 If a formula can be refuted in s steps using resolution,
then it can be refuted in O(ns) steps using cutting planes.

We do not prove the lemma here, but provide an illustrative example.
Consider the resolution derivation

¬x ∨ y ∨ z

x ∨ y ∨ ¬w
⎫⎪⎬⎪⎭ ⇒ y ∨ z ∨¬w.

Viewing the clauses as inequalities, this corresponds to

x − y − z ≤ 0
−x − y + w ≤ 0

⎫⎪⎬⎪⎭ ⇒ −y − z + w ≤ 0.

Cutting Planes 171

This derivation does not directly follow by taking linear combinations.
If we add the first two inequalities, we get −2y − z + w ≤ 0, which is
not quite what we want. However, we can derive the inequality we seek
using the rounding rule:

x − y − z ≤ 0
w ≤ 1

⎫⎪⎬⎪⎭ ⇒ x − y − z + w ≤ 1,

−x − y + w ≤ 0
−z ≤ 0

⎫⎪⎬⎪⎭ ⇒ −x − y − z + w ≤ 0,

1
2 · (x − y − z + w − 1 ≤ 1)
1
2 · (−x − y − z + w ≤ 0)

⎫⎪⎬⎪⎭ ⇒ −y − z + w ≤ �1/2� = 0.

In fact, cutting planes is strictly stronger than resolution. For exam-
ple, cutting planes allows us to refute the pigeonhole principle using
just O(n2) steps.14 Rewriting the clauses of the pigeonhole principle as 14 Cook et al., 1987; and Jukna,

2012.linear inequalities, we get

Pi ≡ −
n−1∑
j=1

xi,j ≤ −1, Pigeon i must be in some hole.

Hi,i′,j ≡ xi,j + xi′,j ≤ 1. Hole j cannot contain both
i, i′.

We claim that for each j, we can derive the inequality

Lk,j ≡
k∑
i=1

xi,j ≤ 1

in O(k) steps. The inequality L2,j is H1,2,j . To derive Lk,j from previ-
ously derived inequalities, use the derivation rules O(k) times to get

(k − 1) · Lk−1,j +

k−1∑
i=1

Hi,k,j

≡ k (x1,j + x2,j + · · · + xk,j) ≤ 2k − 1.

Now, divide by k and round to get Lk,j . To complete the proof, observe
n−1∑
j=1

Ln,j ≡
n−1∑
j=1

n∑
i=1

xi,j ≤ n − 1,

while
n∑
i=1

Pi ≡ −
n∑
i=1

n−1∑
j=1

xi,j ≤ −n.

Adding these last two inequalities gives 1 ≤ 0.
To summarize, cutting planes can efficiently prove the pigeonhole

principle, although resolution cannot. Can we find a formula that is diffi-
cult to refute using cutting planes? Communication complexity provides
such an example.

172 Circuits and Proofs

Lower Bounds on Cutting Planes
Here we give an example of an unsatisfiable formula that requires an
exponential number of steps to refute in the cutting planes proof system.
The formula is based on properties of graphs.

Given a graph, a vertex cover is a set of vertices U such that every
edge of the graph contains at least one vertex from U. A matching is a
set of disjoint edges. We design the formula to encode the fact that the
size of every vertex cover must be larger than the size of every matching.

Every edge in the matching
must be covered by one vertex
from any vertex cover, and the
edges are disjoint.

We construct a formula that asserts that the input graph has a vertex
cover of size k − 1, as well as a matching of size k. This ensures that
the formula is unsatisfiable. For each possible edge e = {v, u} ⊂ [n],
we have the variable xe which is 1 if and only if the edge e is present
in the graph. For i ∈ [k] and e, the variable yi,e encodes whether e is
the ith edges in the matching. For j ∈ [k − 1] and a vertex v ∈ [n], the
variable z j,v encodes whether v is the jth vertex in a cover. Now, define
the following formulas:

C =
∧

e∈([n]2)

(
¬xe ∨

∨
v∈e,j∈[k−1]

z j,v
)
,Every edge is covered.

Cj =
(∨
v∈[n]

z j,v
)
∧
∧

v�v′ ∈[n]
(¬z j,v ∨ ¬z j,v′) for all j ∈ [k − 1],The jth vertex in the cover is

unique.

M =
∧

e,e′ ∈([n]2): |e∩e′ |=1

∧
i�i′ ∈[k]

(¬yi,e ∨¬yi′,e′),Edges in matching are
disjoint.

Mi =
(∨
e∈([n]2)

yi,e
)
∧
(∧
e�e′ ∈([n]2)

(¬yi,e ∨ ¬yi,e′)
)

for all i ∈ [k],The ith edge of the matching
is a unique edge in the graph.

K =
∧

e∈([n]2),i∈[k]

(
xe ∨ ¬yi,e

)
.Edges in the matching are in

the graph.

Finally, define the formula:

F = C ∧
(k−1∧
j=1

Cj

)
∧
(k∧
i=1

Mi

)
∧ M ∧ K .

The formula F has at most O(n4) clauses. However, an exponential
number of inequalities are needed to refute it, at least with a tree-like
proof.1515 Impagliazzo et al., 1994;

Krajíček, 1997; Pudlák, 1997;
and Hrubeš, 2013. Theorem 9.15 Any tree-like cutting planes refutation of F with n/4 ≤

k ≤ n/2 must derive 2Ω(n/ log n) inequalities.

Cutting Planes 173

The proof is by reduction to the communication complexity of the
matching game, for which we already proved a lower bound in Theo-
rem 9.5. In the matching game, Alice gets a graph G that has a matching
of size k ≈ n/3, and Bob gets a graph H that does not have a matching
of size k. Their goal is to find an edge in G that is not in H.

Lemma 9.16 If there is a tree-like cutting plane proof of size s refuting
F, then there is a randomized protocol for the matching game with
communication O(log(s)(log(n) + log log(s))).

By the lemma and Theorem 9.5,

log(s)(log(n) + log log(s)) ≥ Ω(n),

which proves Theorem 9.15.
The proof of the lemma shows how to efficiently convert a cutting

planes refutation to a communication protocol. The proof extends to
many other formulas that have similar structure. For simplicity, we limit
the discussion to this particular formula.

Proof of Lemma 9.16 Alice sets the variables yi,e to be consistent with
her matching, and Bob sets the variables z j,v and xe to be consistent
with the graph H. Under this setting of variables, all of the clauses in
Mi , M , Cj , C are true, but one of the clauses in K must be false. This
false clause specifies an edge that is in Alice’s graph G but not in Bob’s
graph H. Our goal is to find this clause using the refutation of F.

By Lemma 1.8, the proof must derive an inequality L that depends on
at most 2s/3 of the clauses, and on at least s/3 of the clauses. Our aim
is to check whether L is satisfied under the assignment to the variables
described above. The inequality L can be written as

κ +
∑
i,e
αi,e · yi,e ≤

∑
j,v
β j,v · z j,v +

∑
e

γe · xe.

All of the variables on the left-hand side are known to Alice, and all
the variables on the right-hand side are known to Bob. Because the
variables are Boolean, there are at most 2n3 possible values for the left-
hand side, and at most 22n3 possible values for the right-hand side. Alice
and Bob know L, so they also know all these ≤ 21+2n3 possible values.
The parties can use the randomized protocol for solving the greater-
than problem to compute whether or not this inequality is satisfied by
their variables, as in Exercise 3.1. They expend O(log(n/ε)) bits of
communication in order to make sure that output of their computation is
correct with error ε .

If the inequality L is not satisfied, Alice and Bob can safely discard
the clauses that are not used to derive L and continue to find a false
clause. Otherwise, all of the clauses used to derive L can safely be
discarded, and Alice and Bob can start their search again after discarding
all the inequalities used to derive L. In either case, they discard at least
s/3 clauses.

174 Circuits and Proofs

This process can repeat at most O(log s) times, so the probability that
they make an error is at most O(ε log s) by the union bound. Setting ε to
be small enough so that this number is at most 1/3, we obtain a protocol
whose length is at most O(log(s)(log n + log log s)). �

Exercises
Ex 9.1 – Prove that every circuit of size s can be simulated by a formula of
size 2s .

Ex 9.2 – We know that every function can be computed by a circuit of depth n,
and that most functions require depth Ω(n). Show that there is a function that
can be computed in depth O(

√
n), but cannot be computed in depth O(n1/4).

Ex 9.3 – Show that any Boolean formula can be balanced. Prove that if a
Boolean function can be computed by a formula of size s, then it can be
computed using a formula of depth O(log s). Hint: This is similar to how we
balanced protocol trees in Chapter 1.

Ex 9.4 – We showed that any formula that computes whether or not x ∈ [2n]n

corresponds to n distinct numbers requires a formula of size Ω(n2). This gives
a Boolean function that depends on m bits but requires Ω(m2/ log2 m) size
formulas. Show how you can improve the lower bound to get a Boolean func-
tion depending on m bits that requires formulas of size Ω(m2/ log m). Hint:
Consider the element distinctness function with x ∈ [n]k for the appropriate n
and k.

Ex 9.5 – Suppose φ(x1, . . . , xn, y1, . . . , yn) is a Boolean formula in conjunctive
normal form that is unsatisfiable. Suppose Alice and Bob are given x, y ∈
{0, 1}n, respectively, and want to find a specific clause in φ that is not satisfied.

1. Show that if the formula has a resolution refutation of depth d, then
Alice and Bob can find this clause with d bits of communication using
a deterministic protocol.

2. Show that if the formula has a cutting-planes refutation of depth d, then
Alice and Bob can find this clause with d log d bits of communication
using a randomized protocol.

Ex 9.6 – In this exercise we give another lower bound for the cutting planes
proof system. Consider the game where Alice is given a permutation π : [n] →
[n], and Bob is given a subset Y ⊆ [n], with the promise that π(1) ∈ Y , π(n) � Y .
Their goal is to compute i such that π(i) ∈ Y , π(i + 1) � Y . One can show that
Ω(log2 n) communication is required.1616 Karchmer et al., 1995.

1. Give a protocol that solves the game with O(log2 n) communication.
2. Consider the monotone function that takes a graph G as input, and out-

puts whether or not the vertex 1 is connected to 2. Use the lower bound
described above to prove that any monotone formula for this function
must be of size at least nΩ(log n) .

