Lecture 14: Randomized Complexity Classes
Anup Rao
May 8, 2020

Probability Review

We start by reviewing a couple of useful facts from probability the-
ory.

Lemma 1 (Markov’s inequality). If X is a non-negative random variable,
then Pr(X > (- E [X]] < 1/¢.

Proof
E[X] =) k-Pr[X =k]
k

> Y ((E[X])-Pr[X =k
k>¢

=(E[X] .kZZPr[X = k],

proving that Pr[X > (| < 1/(. &

We shall need to appeal to the Chernoff-Hoeffding Bound:

Theorem 2. Let X1,..., Xy be independent random variables such that
each X; is a bit that is equal to 1 with probability < p. Then Pr[y! | X; >
pn(l te) < o—€np/4

Finally, we need the following trick. Suppose we toss a coin which
has a probability p of giving heads and 1 — p of giving tails. Let H
denote the number of coin tosses before we see heads. Then

Fact3. E[T] =1/p.

Proof
E[T|=p-1+(1-p)-(E[T|+1)
=E[T]=1+(1-p) E|[T]
=E[Tp=1
= EI[T]=1/p.

|

Randomized Classes

There are several different ways to define complexity classes involv-
ing randomness. A turing machine with access to randomness is just
like a normal turing machine, except it is allowed to toss a random
coin in each step, and read the value of the coin that was tossed.

LECTURE 14: RANDOMIZED COMPLEXITY CLASSES

BPP

We say that the randomized machine computes the function f if for
every input x, Pr,[M(x,r) = f(x)] > 2/3, where the probability is
taken over the random coin tosses of the machine M. BPP is the set
of functions that are computable by polynomial time randomized
turing machines in the above sense.

RP

We shall say that f € RP if there is a randomized machine that
always compute the correct value when f(x) = 0, and computes the
correct value with probability at least 2/3 when f(x) = 1.

zpp

Finally, we define the class ZPP to be the set of boolean functions
that have an algorithm that never makes an error, but whose expected
running time is polynomial in 7.

Error reduction

The choice of the constant 2/3 in these definitions is not crucial, as
the following theorem shows:

Theorem 4 (Error Reduction in BPP). Suppose there is a randomized
polynomial time machine M, a boolean function f and a constant ¢ such
that Pr,[M(x,r) = f(x)] > 1/2+ n—C. There for every constant d, there
is a randomized polynomial time machine M’ such that Pr,[M'(x,r) =
fx)]>1-27""

Proof of Theorem 4: On input x, the algorithm M’ will run M
repeatedly 1 times for some constant k (that we shall fix soon), and
then output the majority of the answers. Let X; the binary random
variable that takes the value 1 only if the output of the i"th run is
incorrect.

We have that Xy, ..., X« are independent random variables, and
each is equal to 1 with probability at most 1/2 —n~°. Thus,

Pr[)_X; > nk/2] = PrY_X; > n*(1/2 —n7)(1/2)/(1/2 — n°)]
i i
< Pr[ZXi >nf(1/2 = n=)(1+2n7°)]
< Zfol(nfzf)nk/s
Set k to be large enough so that this probability is less than 2. m

By brute force search, we can easily prove:

2

LECTURE 14: RANDOMIZED COMPLEXITY CLASSES

Theorem 5. BPP C EXP.

Since RP is the same as the set of functions for which a random
witness is a good witness,

Theorem 6. RP C NP.
We also have:
Theorem 7. ZPP = RP N coRP.

Proof Suppose f € ZPP, via a randomized algorithm M whose ex-
pected running time is f(n). Consider the algorithm that simulates M
for 10t(n) steps, and outputs 0 if the simulation halts. Then clearly,
the algorithm only makes an error if the correct answer is 1. On the
other hand, the probability that running time of M exceeds 10t(n) is
at most 1/10 (or else the expected running time would exceed t(n).
Thus we obtain an RP algorithm. The same idea (reversing the roles
of 0 and 1) gives a coRP algorithm.

For the other direction, suppose f has an RP algorithm M; and a
coRP algorithm Mjy. Then on input x consider the algorithm that al-
ternatively runs My(x), M1(x), Mp(x), ... until either M;(x) outputs
1, or My(x) outputs 0. If My (x) = 1, then it must be that f(x) = 1.
Similarly if My(x) = 0, it must be that f(x) = 0. In any case, one
of these two algorithms will verify the value of x in an expected con-
stant number of runs. W

Theorem 8. Every function in BPP has polynomial sized circuits.

The above theorem again easily following from the Chernoff-
Hoeffding bound. We can first amplify the error probability so that
the probability of error is less than 27". Then by the union bound,
for each input length, there must be some fixed string r such that
M(x,r) = f(x) for each of the 2" choices of x. Then we can use a
circuit to hardcode this r and compute f in polynomial size.

We do not know whether BPP = P and this is a major open ques-
tion. However, there have been some interesting conditional results.
For example, work of Impagliazzo, Nisan and Wigderson has led to
the following theorem:

Theorem 9. If there is some function f € EXP such that for every constant
€ > 0, f cannot be computed by a circuit family of size 2°", then BPP = P.

The theorem is interesting because the assumptions don’t seem
to say anything about useful. The assumption is that there is a func-
tion that can be computed by exponential time turing machines but
cannot be computed by subexponential sized circuits. This fact is
cleverly leveraged to derandomize any randomized computation.
The proof of this theorem is outside the scope of this course.

LECTURE 14: RANDOMIZED COMPLEXITY CLASSES

Randomized Algorithm review

WE DID NOT DI1sCUss this material in class. I include it here for your
reference:

Probability Spaces

A probability space is a set () such that every element a € () is as-
signed a number 0 < Prfa] < 1 (called the probability of), and
Yacq Pr[a] =1

An event in this space is a subset E C (). The probability of the
event is), Pr[a]. For example, imagine we toss a fair coin # times.
Then the probability space consists of the 2" possible outcomes of the
coin tosses. If E is the event that the first k coin tosses are heads, this
event has probability exactly 2. Given two events E, E/, we write
Pr[E|E’] to denote Pr[E N E’]/ Pr[E’]. This is the probability that E
happens given that E’ happens. We say that E, E’ are independent if
Pr[E N E'] = Pr[E] - Pr[E']. In other words, E, E’ are independent if
Pr[E|E’] = Pr[E].

A real valued random variable is a function X : 3 — R. The number
of heads in the coin tosses is a random variable. The expected value
of a random variable X is defined as E [X] = Y ,cq Pr[a] - X(a). The
following lemma is a very useful fact about random variables.

Lemma 10 (Linearity of expectation). If X,Y are real random variables,
then E[X +Y] =E[X] +E[Y].

Proof
E[X+Y]= Z(;)Pr[a] “(X(a) +Y(a))
= Y Prfa]- Y(a) + }_ Prfa] - X(a)
acQ aeQ)
=E[X]+E[Y].
[]

Here is an expectation basic magic
trick: Tell your audience to generate

For example, let us calculate the expected number of runs of see- ,
two sequences of coin tosses—one

ing 7 contiguous heads or tails in a 200 coin tosses. Let X; be 1 if generated using 200 flips of a coin,
there are 7 heads or tails that start at the 7"th position, and 0 other- and the second generated by hand.

. . You [th , and th it
wise. If 1 <i < 194, then E[X;] = Pr[X; = 1] =227 = 1/64. If ou leave the room, and they write

both sequences on a black board. Then
i > 196, then X; = 0. On the other hand, the total number of such you come back into the room and

: 194 : . : immediately point out the sequence
runs is) ;77 X;. So by linearity of expectation, the expected number YP q
=1 Y P p that was generated by hand. The trick:

of such runs is 194/64 ~ 3.031. a random sequence is very likely to

In class, we discussed the waiting time to see the first heads. Sup- have a run of 7 heads or tails, while
people tend to not insert such a long
run into a sequence that they think
looks random.

pose you keep tossing a fair coin until you see heads. Let T be the

LECTURE 14: RANDOMIZED COMPLEXITY CLASSES

number of tosses you make. What is the expected value of T? The
key observation is that if the first toss is a heads, you stop with

T = 1. Otherwise, the rest of the experiment is exactly the same
as the original random experiment. So, we get:

E[T)=(1/2)-14+(1/2)- (1 +E[T])

=E[T]-(1-1/2)=1
=E[T] =2
Randomized Algorithms

We shall give a few examples of problems where randomness helps
to give very effective solutions.

Matrix Product Checking

Suppose we are given three n x 1 matrices A, B, C, and want to check
whether A - B = C. One way to do this is to just multiply the ma-
trices, which will take much more than #? time. Here we give a ran-
domized algorithm that takes only O(n?) time.

Input: 3 n X n-matrices A, B, C

Result: Whether or not A-B = C.

Sample an 7 coordiante column vector r € {0,1}%! uniformly at
random ;

if A(B(r)) = C(r) then
‘ Output “Equal”;

else
‘ Output “Not equal”;

end

Algorithm 1: Algorithm for Multiplication Checking

The algorithm only takes O(n?) time. For the analysis, observe
that if AB = C, then the algorithm outputs “Equal” with probability
1. If AB # C, the algorithm outputs “Equal” only when ABr = Cr =
(AB — C)r = 0. We shall show that this happens with probability at
most 1/2.

Let D = AB — C. Then D # 0, so let d;; be a non-zero entry of
D. Then we have that the i’th coordinate (Dr); = Y dj - 1. This

LECTURE 14: RANDOMIZED COMPLEXITY CLASSES

coordinate is 0 exactly when r; = (1/ dij) Yk djxrx. Finally, observe

Pr |fv = (1/d1]) Z dikrk]
K

= ZPI‘ [(II = (1/d1]) Zdikrk] -Pr [V] = ll’ﬂ = (1/(11]) Zdikrk

= iZj

<1/2) Pr [a = (1/dy)) dik”k}
7 k7]

=1/2.

Exercise: Modify the above algorithm so that the probability the
algorithm outputs “Equal” when AB # C is at most 1/4.

2-SAT

A two SAT formula is a CNF formula where each clause has exactly
2-variables. Here we give a randomized algorithm that can find a
satisfying assignment to such a formula, if one exists.

Input: A two sat formula ¢
Result: A satisfying assignment for ¢ if one exists
Set a = 0 to be the n-bit all 0 string;
fori=1,2,...,100n* do
if ¢(a) =1 then
‘ Output g;
end
Let a;,a; be the variables of an arbitrary unsatisfied clause.
Pick one of them at random and flip its value ;
end
Output “Formula is not satisfiable”;

Algorithm 2: Algorithm for 2 SAT

If ¢ is not satisfiable, then clearly the algorithm has a correct out-
put. Now suppose ¢ is satisfiable and b is a satisfying assignment,
so ¢(b) = 1. We claim that the algorithm will find b (or some other
satisfying assignment) within 100n? steps with high probability. To
understand the algorithm, let us keep track of the number of coordi-
nates that 4, b disagree in during the run of the algorithm. Observe
that during each run of the for loop, the algorithm picks a clause that
is unsatisfied under a. Since b satisfies this clause, 4, b must disagree
in one of the two variables of this clause. Thus the algorithm reduces
the distance from a to b with probability 1/2.

Thus we can think of the algorithm as doing a random walk on the

6

LECTURE 14: RANDOMIZED COMPLEXITY CLASSES

line. There are n + 1 points on the line, and at each step, if the algo-
rithm is at position i it moves to position i + 1 with probability 1/2
and to position i — 1 with probability at least 1/2. We are interested
in the expected time before the algorithm hits position 0. Let

t; = IE [# steps before hitting position 0 from position i] .

Then we have the following equations:

to =0,

ti=(1/2)ti1 + (1/2)t; 1 +1 i#0,n
=ti—tig =ty —ti+2

by =14ty 1.

Thus we can compute:

th = (tn — tu—1) + (tso1 —tp2) +... + (t1 —to)

=14+3+4+...
_i(zj—l)_2<ij> —n:n(n+1)—n:n2.
=1 =1

Thus the expected time for the algorithm to find a satisfying as-

signment is 1.

Lemma 11.
Prlalgorithm does not find satisfying assignment in 100n* steps] < 1/100.
Proof We have that
n? > E [# steps to find assignment]
= i s - Pr[s steps to find assignment]
s=0
> Prlat least 1001 steps are taken| - 10012,

Therefore,

Pr[more than 1001° steps are taken] < 1/100.

Max Cut

Given a graph G = (V,E), a subset S C V is called a cut of the graph.

The size of the cut is the number of edges that cross from S to V — S.

7

LECTURE 14: RANDOMIZED COMPLEXITY CLASSES

It is known to be NP-hard to compute the MAX-cut of a graph. Here
we give a simple randomized algorithm that will compute a cut that
is half as big as the biggest cut in expectation.

The algorithm is just to pick the subset S at random, by includ-
ing every vertex in S with probability half. For each edge ¢, let X, be
the random variable that is 1 if e goes from S to V — S, and 0 other-
wise. Then we see that the size of the cut is exactly) ,cg X.. We can
compute E [X,] = 1/2, and so by linearity of expectation,

E

L Xe

ecE

=Y E[X] = |E|/2.

ecE

Fingerprinting

Suppose Alice has an n-bit string x and Bob has an n-bit string y,
and they want to check that they are equal. Naively this takes n
bits of communication between them. We can do much better using
randomization.

Alice samples a random prime number p from the set of primes
that are less than cn In#, for some constant ¢ that we shall pick later.
She then sends p and x mod p to Bob. Bob checks that x mod p is
equal to y mod p. Thus they only need to communicate O(log) bits
in this process.

If x = y, this will always produce the right outcome. We shall
argue that if x # y, the probability that they make a mistake is going
to be very small. To do this, we need a theorem:

Theorem 12 (Prime number theorem). Let 7t(a) denote the number of

primes that are at most a. Then lim, s« % =1.

When x # y, the above process fails only when p divides x — y.
Since |x —y| < 2", x — y can have at most n prime factors. On the
other hand, by the prime number theorem, the number of primes of
size up to cnlnn is at least cnlnn/(In(cnlnn)) = Q(cn). Thus the
probability that the prime Alice picks divides x — y is at most O(1/c).

	Probability Review
	Randomized Classes
	Error reduction
	Randomized Algorithm review
	Probability Spaces
	Randomized Algorithms
	Randomness vs non-determinism

