
Lecture 14: BPP vs NP and Polynomials
Anup Rao

May 13, 2020

Randomness vs non-determinism

We did not cover the details of this section in lecture. However, we
did discuss the result:

Theorem 1. BPP ⊆ NPSAT.

Proof Suppose f ∈ BPP. Let us first reduce the error of the prob-
abilistic algorithm for f to 2−n. Suppose the algorithm uses m ran-
dom bits. Thus, we just need to be able to distinguish the case when
M(x, r) accepts 1 − 2−n fraction of all m bit strings from the case
when it accepts only 2−n fraction of all m bit strings. Distinguishing
the fractions 1 from 0 would be easy (just try a single string). Distin-
guishing the fractions 1 from < 1 can be done with a query to SAT.
So we shall reduce to this case.

Let u1, . . . , uk ∈ {0, 1}m be k random m bit strings, where k will
be chosen to be much smaller than 2n. Then we have the following
claims, where here r ⊕ ui denotes the bitwise parity of the m-bit
string r with the m-bit string ui.

Claim 2. If f (x) = 0, for every choice of u1, . . . , uk, there exists some
r ∈ {0, 1}m such that

∨
i M(x, r⊕ ui) 6= 1.

The claim following from the union bound. For every choice of
u1, . . . , uk, if you pick a random r, the probability that M(x, r ⊕ ui)

is incorrect is at most 2−n. Thus the probability that any of them is
wrong is at most k2−n < 1.

In the other case, we prove that the opposite happens:

Claim 3. If f (x) = 1, there exist choices u1, . . . , uk, such that for every
r ∈ {0, 1}m,

∨
i M(x, r⊕ ui) = 1.

For any fixed r, the probability that all choices of ui fail to give the
correct answer is at most 2−nk. Thus, as long as nk > m, by the union
bound some choice of ui will work for all choices of r.

Our final algorithm in NPSAT is as follows. We start by guessing
u1, . . . , uk (say k = m2)to satisfy Claim 3. Then we use the SAT oracle
to check whether or not there is an r that makes M(x, r ⊕ ui) accept
for some i.

lecture 14: bpp vs np and polynomials 2

Schwartz-Zippel Lemma

Recall that a polynomial p(x, y, z) is an expression of the form

14x2y5z8 − 3x3 + 17y6z3.

The degree of the polynomial is the maximum of the sums of the
powers of the variables in any monomial. So in the last example, the
degree is 15.

The Schwartz-Zippel Lemma turns out to be quite useful for ran-
domized algorithms:

Lemma 4. Let p(x1, . . . , xn) be a polynomial of degree d, such that p is
not the 0 polynomial. Let S be any set of numbers, and let a1, . . . , an be n
random numbers drawn from S. Then Pr[p(a1, . . . , an) = 0] ≤ d/|S|.

Proof We prove the lemma by induction on n. When n = 1, the
theorem follows from the fact that any non-zero degree d polynomial
in one variable has at most d roots. Thus p(a) = 0 only when a is a
root, which happens with probability at most d.

For the general case. Let us write the polynomial in the form

p(x1, . . . , xn) = x`n · q(x1, . . . , xn−1) + r(x1, . . . , xn),

where here r is a polynomial in which the degree of xn is at most
`− 1. So we simply gather all the terms which have maximum degree
in xn.

Now let E1 be the event that p(a1, . . . , an) = 0, and let E2 be the
event that q(a1, . . . , an−1) = 0. Then we have that

Pr[E1] = Pr[E1 ∧ E2] + Pr[E1 ∧ ¬E2]

= Pr[E2] · Pr[E2|E1] + Pr[¬E2] · Pr[E1|¬E2]

≤ Pr[E2] + Pr[E1|¬E2].

By induction, since q is a degree d − ` polynomial, Pr[E2] ≤ (d −
`)/|S|. Since after x1, . . . , xn−1 are fixed in ¬E2, we have that p(a1, . . . , an−1, xn)

is a non-zero polynomial of degree `, we have that Pr[E1|¬E2] ≤
`/|S|. Thus Pr[E1] ≤ d/|S|.

Application: Algorithm for Perfect Matching

Given a bipartite graph G with n vertices on the left and n vertices
on the right, a perfect matching in the graph is a set of n disjoint
edges in the graph. Here we give a simple randomized algorithm for
computing whether or not a given graph contains a perfect matching.

lecture 14: bpp vs np and polynomials 3

Recall that the determinant of an n× n matrix M is defined to be

det(M) = ∑
π ∈ Sn

sign(π)
n

∏
i=1

Miπ(i),

where here Sn is the set of permutations on n elements, and sign(π)

is either 1 or −1 depending on the permutation. We have algorithms
for computing the determinant that run in time O(n3).

Now consider the matrix obtained from the input graph by setting

Mij =

xij if (i, j) is an edge,

0 otherwise.

Then we have that det(M) is non-zero if and only if the graph has a
perfect matching! Thus to test whether or not the graph has a perfect
matching, it is enough to determine whether the polynomial det(M)

is non-zero or not. Observe that det(M) is a polynomial of degree at
most n. Calculating this polynomial explicitly is too time consuming,
since in general it may have an exponential number of monomials.
Instead the following randomized algorithm works:

Input: A bipartite graph G with n vertices on each side.
Result: Whether or not G contains a perfect matching
For i, j ∈ [n], sample aij uniformly at random from the set
{1, 2, . . . , 10n};

Set

Aij =

aij if (i, j) is an edge,

0 otherwise ;

if det(A) = 0 then
Output “No perfect matching”;

else
Output “There is a perfect matching”;

end

Algorithm 1: Algorithm for deciding perfect matching

If the graph has no perfect matching, then clearly the polynomial
det(M) = 0, so the algorithm always outputs that there is no perfect
matching. However, when the graph does contain a perfect matching,
the probability that det(A) = 0 is at most 1/10 by the Schwartz-
Zippel lemma.

	Randomness vs non-determinism
	Schwartz-Zippel Lemma
	Application: Algorithm for Perfect Matching

