
Lecture 14: Permanent and Interactive Proofs
Anup Rao

May 15, 2020

Determinant vs Permanent

The determinant is very similar to another polynomial, the perma-
nent:

perm(M) = ∑
π ∈ Sn

n

∏
i=1

Miπ(i).

It’s the same polynomial as the determinant, except that the coeffi-
cients are all 1. Surprisingly, the permanent seems much harder to
compute. Indeed, there is a good reason for this. One can reduce
3SAT to computing the permanent!

Let us define the complexity class #P as follows. We say that a
function f is in #P if and only if there is a polynomial time turing
machine M and a polynomial p such that f (x) = |{y ∈ {0, 1}p(|x|) :
M(x, y) = 1}|. Thus if one thinks of M as the verifier to an NP prob-
lem, f counts the number of witnesses to x. Examples of problems in
#P include #SAT, where #SAT(φ) is the number of satisfying assign-
ments to the boolean formulat φ.

We shall not prove the following theorem, but it shows that an
efficient algorithm for the permanent would prove that P = NP.

Theorem 1. Every f in #P can be reduced to #SAT(φ) in polynomial time.
Every f in #P can be reduced to perm in polynomial time.

Some Math Background

A finite field is a finite set that behaves just like the real numbers,
in that you can add, multiply, divide and subtract the elements,
and the sets include 0, 1. An example of such a field is Fp, the set
{0, 1, 2, . . . , p}, where here p is a prime number. We can perform ad-
dition and multiplication by adding/multiplying the integers and
taking their remainder after division by p. This leaves us back in the
set. For any 0 6= a ∈ Fp, one can show that there exists a−1 ∈ Fp such
that a · a−1 = 1. To see this, note that since a is relatively prime to p,
Euclid’s gcd algorithm shows that there exist integers b, d such that
ab + pd = 1, so we can define a−1 = b mod p.

We shall work with polynomials over finite fields. Fp[X] denotes
the set of polynomials in the variable X with coefficients from Fp.

Fact 2. Given any set of d + 1 distinct points a0, a1, . . . , ad, there is a one
to one correspondence between polynomials of degree at most d, and their
evaluations on the points a0, . . . , ad.

lecture 14: permanent and interactive proofs 2

Proof Given any set of constraints f (ai) = bi, we can build a degree
d polynomial for f as follows:

f (x) =
d

∑
i=0

bi ∏
j 6=i

(x− aj)/(ai − aj)

Thus, for every such map, we have defined a polynomial that evalu-
ates that map.

Since the dimension of the set of functions f : {a0, . . . , ad} → F is
d + 1, which is the same as the dimension of the space of polynomials
of degree d, this relationship must be a one to one correspondence.

An easy consequence of the above fact is the following:

Fact 3. Any non-zero polynomial f (X) of degree d has at most d roots. (a is
a root if f (a) = 0).

Proof Suppose there are d + 1 roots a0, . . . , ad. Then there must be
exactly one degree d polynomial evaluating to 0 on all these roots,
and so f must be the 0 polynomial, which is a contradiction.

A randomized algorithm for estimating the permanent

Given the matrix M, let us define the matrix A as follows:

Aij =

−
√

Mij with probability 1/2,√
Mij with probability 1/2.

All entries are sampled independently. (Note that Aij may be a com-
plex number).

The algorithm is to just output det(A)2.

Claim 4. E
[
det(A)2] = perm(M).

Proof We have

E

[
det(A)2

]
= E

(∑
σ∈Sn

sign(σ)
n

∏
i=1

Aiσ(i)

)2

= E

[
∑

σ,σ′∈Sn

sign(σ) · sign(σ′)
n

∏
i=1

Aiσ(i)Aiσ′(i)

]

lecture 14: permanent and interactive proofs 3

Now we separate out the terms where σ = σ′ to get

E

[
det(A)2

]
= E

[
∑

σ∈Sn

sign(σ)2
n

∏
i=1

A2
iσ(i) + ∑

σ 6=σ′∈Sn

sign(σ) · sign(σ′)
n

∏
i=1

Aiσ(i)Aiσ′(i)

]

= E

[
∑

σ∈Sn

n

∏
i=1

Miσ(i) + ∑
σ 6=σ′∈Sn

sign(σ) · sign(σ′)
n

∏
i=1

Aiσ(i)Aiσ′(i)

]

= perm(M) + E

[
∑

σ 6=σ′∈Sn

sign(σ) · sign(σ′)
n

∏
i=1

Aiσ(i)Aiσ′(i)

]

= perm(M) + ∑
σ 6=σ′∈Sn

sign(σ) · sign(σ′)E

[
n

∏
i=1

Aiσ(i)Aiσ′(i)

]

Whenever σ 6= σ′, we have that there is some i for which σ(i) 6= σ′(i),
and so the variable Aiσ(i) is independent of all other variables in

E

[
∏n

i=1 Aiσ(i)Aiσ′(i)

]
. Thus we get that E

[
∏n

i=1 Aiσ(i)Aiσ′(i)

]
=

E

[
Aiσ(i)

]
·E
[

Aiσ′(i)

]
·E
[
∏j 6=i Ajσ(j)Ajσ′(j)

]
= 0, as required.

The Permanent is Randomly Self-Reducible

An interesting feature of the permanent is that if you can com-
pute the permanent for most matrices, then you can compute the
permanent for all matrices with good probability.

Let M be an n× n matrix, and let p > 3(n + 1) be a prime. Sup-
pose we have an algorithm A(M) that outputs perm(M) for at least
1− 1/(3(n + 1)) fraction of all the matrices with entries drawn from
Fp. The consider the following algorithm:

Input: An n× n matrix M with entries from Fp.
Result: A number y ∈ Fp. .
Let X be a uniformly random n× n matrix with entries from Fp ;
Let f (t) = perm(M + tX);
Compute f (1), f (2), . . . , f (n + 1) by running

A(M + X), A(M + 2X), . . . , A(M + (n + 1)X);
Reconstruct f (t);
Output f (0);

Algorithm 1: Algorithm for computing the permanent

Observe that f (t) is always a polynomial of degree at most n. So,
it is uniquely determined by the values f (1), . . . , f (n + 1). By the
union bound, these values are computed correctly with probability at

lecture 14: permanent and interactive proofs 4

least 1− (n + 1)/(3(n + 1)) = 2/3. Thus, the algorithm computes the
permanent with probability at least 2/3.

Interactive proofs

One way to define NP is via the idea of a proof system. NP is the set
of functions f for which there is a polynomial time verifier algorithm
V such that given any x with f (x) = 1, there exists a prover P that
can prove to the verifier that f (x) = 1 by providing a polynomial
sized witness w for which V(x, w) = 1, yet if f (x) = 0, no such
prover exists.

What happens if we allow the verifier to have a longer interactive
conversation? Presumably, giving the verifier the ability to adaptively
ask the prover questions based on his previous responses should
give the verifier more power, and so allow the verifier to verify the
correctness of the value for a larger set of functions. In fact, this
does not give the verifier additional power: for if there is such an
interactive verifier V I for verifying that f (x) = 1, we can design a
non-interactive verifier that does the same job. The new verifier will
demand that the prover provide the entire transcript of interactions
between V I and a convincing prover. The new verifier can then verify
that the transcript is correct, and would have convinced V I . Thus, if f
has an interactive verifier, then f ∈ NP.

The story is more interesting if we allow the verifier to be random-
ized. We say that f ∈ IP if there is a polynomial time randomized
verifier V such that

Completeness For all x, if f (x) = 1, there is an oracle P such that
Prr[VP(x, r) = 1] ≥ 2/3.

Soundness For all x, if f (x) = 0, for every oracle P, Prr[VP(x, r) =

1] ≤ 1/3.

Since any prover can be simulated in polynomial space, if f ∈ IP,
then f ∈ PSPACE. The algorithm for f can just try all possible
sequences of messages from the prover until it finds a sequence of
messages that convinces the verifier, if such a sequence exists.

Theorem 5. IP ⊆ PSPACE.

It is easy to check that allowing the prover to be randomized does
not change the model.

We shall eventually prove that IP = PSPACE (and so IP is poten-
tially much more powerful than NP).

lecture 14: permanent and interactive proofs 5

Example: Graph non-Isomorphism

Two graphs on n vertices are said to be isomorphic if the vertices of
one of the graphs can be permuted to make the two equal.

Consider the problem of testing whether two graphs are not iso-
morphic: the boolean function f such that f (G1, G2) is 1 if and only if
G1 is not isomorphic to G2. f ∈ coNP, since the prover can just send
the verifier the permutation that proves that they are isomorphic. We
do not know if f ∈ NP, but it is easy to prove that f ∈ IP.

Here is the simple interactive protocol:

1. The verifier picks a random i ∈ {1, 2}.

2. The verifier randomly permutes the vertices of Gi and sends the
resulting graph to the prover.

3. The prover responds with b ∈ {1, 2}.

4. The verifier accepts if i = b.

If G1, G2 are not isomorphic, then any permutation of Gi deter-
mines i, so the prover can determine i and send it back. However, if
G1, G2 are isomorphic, then the graph that the prover receives has the
same distribution whether i = 1 or i = 2, thus the prover can guess
the value of i with probability at most 1/2. Repeating the protocol
several times, the verifier can make the probability of being duped by
a lying prover exponentially small.

	Determinant vs Permanent
	Some Math Background
	A randomized algorithm for estimating the permanent
	The Permanent is Randomly Self-Reducible
	Interactive proofs
	Example: Graph non-Isomorphism

