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Computing the Permanent in IP

The permanent of an n× n matrix M is defined to be ∑π ∏n
i=1 Mi,π(i),

where the sum is taken over all permutations π : [n]→ [n].
The permanent is important because it is a complete function for

the class #P:

Definition 1. A function f : {0, 1}n → N is in #P if there exists a
polynomial p and a poly time machine M such that

f (x) = |{y ∈ {0, 1}p(|x|) : M(x, y) = 1}|

For example, in #P one can count the number of satisfying assign-
ments to a boolean formula, which is potentially much harder than
just determining whether the formula is satisfiable or not. One can
show that any such problem can be reduced in polynomial time to
computing the permanent of a matrix with 0/1 entries. On the other
hand, the permanent itself can be computed in #P. Thus the perma-
nent is #P-complete.

Some Math Background

A finite field is a finite set that behaves just like the real numbers,
in that you can add, multiply, divide and subtract the elements,
and the sets include 0, 1. An example of such a field is Fp, the set
{0, 1, 2, . . . , p}, where here p is a prime number. We can perform ad-
dition and multiplication by adding/multiplying the integers and
taking their remainder after division by p. This leaves us back in the
set. For any 0 6= a ∈ Fp, one can show that there exists a−1 ∈ Fp such
that a · a−1 = 1. To see this, note that since a is relatively prime to p,
Euclid’s gcd algorithm shows that there exist integers b, d such that
ab + pd = 1, so we can define a−1 = b mod p.

We shall work with polynomials over finite fields. Fp[X] denotes
the set of polynomials in the variable X with coefficients from Fp.

Fact 2. Given any set of d + 1 distinct points a0, a1, . . . , ad, there is a one
to one correspondence between polynomials of degree at most d, and their
evaluations on the points a0, . . . , ad.

Proof Given any set of constraints f (ai) = bi, we can build a degree
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d polynomial for f as follows:

f (x) =
d

∑
i=0

bi ∏
j 6=i

(x− aj)/(ai − aj)

Thus, for every such map, we have defined a polynomial that evalu-
ates that map.

Since the dimension of the set of functions f : {a0, . . . , ad} → F is
d + 1, which is the same as the dimension of the space of polynomials
of degree d, this relationship must be a one to one correspondence.

An easy consequence of the above fact is the following:

Fact 3. Any non-zero polynomial f (X) of degree d has at most d roots. (a is
a root if f (a) = 0).

Proof Suppose there are d + 1 roots a0, . . . , ad. Then there must be
exactly one degree d polynomial evaluating to 0 on all these roots,
and so f must be the 0 polynomial, which is a contradiction.

The density of primes:

Fact 4. Let t(n) denote the number of primes in the set [n]. Then

lim
n→∞

t(n)
n/ ln n

= 1.

The fact says that a random n-bit number is likely to be a prime
with probability ≈ 1/n. Thus we can sample an n-bit prime by re-
peatedly sampling random n-bit numbers and checking whether or
not they are prime (which can be done in polynomial time). In fact,
the prime we obtain in this way will be larger than 2n/2 with high
probability, since with high probability all of our samples will be
larger than 2n/2.

The Permanent Protocol

Suppose the verifier is given a boolean matrix M and wants to check
that Perm(M) = k. Let M1,i denote the matrix obtained by deleting
row 1 and column i from the matrix M. Then:

Perm(M) =
n

∑
i=1

M1,iPerm(M1,i).

Consider the function D that maps an index i ∈ [n] to the matrix
D(i) = M1,i. By Fact 2, we can write D(x) for n × n matrix whose
entries are all polynomials of degree n− 1 in x such that D(i) = M1,i.
In other words, D(x) is a n − 1× n − 1 matrix in which each entry
of the matrix is given by a polynomial of degree n− 1 and for every
i ∈ [n], D(i) = M1,i. Here is a first attempt at a protocol for the
verifier:
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1. If n = 1, the verifier checks that M1,1 = k.

2. The verifier asks the prover to send a prime 22n > p > 2n , and
checks that it is in fact a prime larger than k.

3. If n > 1, verifier asks the prover to send the degree n2 polynomial
g ∈ Fp [X ], g(X) = Perm(D(X)).

4. The verifier checks that k = ∑n
i=1 M1,i · Perm(D(i)).

5. The verifier picks a uniformly random a ∈ Fp and recursively
checks that Perm(D(a)) = g(a).

Analysis of the Protocol

If Perm(M) = k, then k ≤ 2n and there is a prime p as required
(we know that the primes are sufficiently dense for such a prime to
exist. Then we have that Perm(M) = k mod p. Perm(D(X)) is a
polynomial if degree at most n2 so the prover that responds honestly
will convince the verifier to accept with probability 1. It only remains
to show that a dishonest prover cannot fool the verifier except with
small probability.

Suppose Perm(M) 6= k. Then it must be that Perm(M) 6= k
mod p, since p is larger than both Perm(M) and k. Note that if the
prover sends g(X) = Perm(D(X), then the verifier will immediately
conclude that Perm(M) 6= k, thus the verifier can only be fooled if
g(X) 6= Perm(D(X)). Then we have that

Pr
a
[g(a) = Perm(D(a))] ≤ n2/ p,

since both g(X), Perm(D(X)) are degree n2 polynomials. Indeed,
the only way that the prover can succeed once he has sent the wrong
polynomial g(X) is if g(a) = Perm(D(a)) in some recursive call.
The recursion has at most n steps, so by the union bound, the prob-
ability that the prover succeeds is at most n3/ p � 1/3, for n large
enough.

A protocol for counting satisfying assignments

We continue to exhibit the power of interaction by showing how it
can be used to solve any problem in PSPACE. Recall that the prob-
lem of computing whether a totally quantified boolean formula is
true is complete for PSPACE, so it will be enough to give an interac-
tive protocol that verifies that such a formula is true.

As a warmup, let us consider the case when we are given a for-
mula of the type ∃x1 , . . . , xn φ(x1 , . . . , xn) and want to count the
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number of satisfying assignments to this formula. Since the perma-
nent is complete for #P, we can reduce this counting problem to the
computation of the permanent, and then use the interactive protocol
from the last lecture, but let us be more direct.

As in the protocol for the permanent, we shall leverage algebra.
Since polynomials are much nicer to deal with than formulas, let us
try to encode the formula φ using a multivariate polynomial. Here is
a first attempt at building such an encoding gate by gate:

• x ∧ y → xy.

• ¬x → 1 − x.

• x ∨ y → x + y − xy.

This encoding gives us a polynomial gφ that computes the same
value as the formula φ, however it is not clear that gφ can be com-
puted in polynomial time. The problem is the encoding for ∨ gates,
which could potentially double the size of the polynomial obtained
in each step. Instead, we use the more clever encoding:

• x ∨ y → 1 − (1 − x)(1 − y).

This allows us to obtain a polynomial gφ which can be written down
in time polynomial in the size of φ.

Then the task of counting the number of satisfying assignments to
φ reduces to computing ∑x∈{0,1}n gφ(x). Following the ideas used
in the protocol for the permanent, here is a protocol for a verifier that
checks that ∑x∈{0,1}n gφ(x) = k.

1. Ask the prover for a prime 22n > p > 2n , and check that it is
correct. Reject if k < p. All arithmetic is henceforth done modulo
p.

2. If n = 1, check the identity by computing it.

3. If n > 1, ask the prover for the degree n polynomial

f (X) = ∑
x2 ,...,xn∈{0,1}n−1

gφ(X , x2 , . . . , xn).

4. Check that f (0) + f (1) = k mod p.

5. Pick a random element a ∈ Fp and recursively check that

f (a) = ∑
x2 ,x3 ,...,xn∈{0,1}n−1

gφ(a, x2 , . . . , xn)
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For the analysis, note that f (X) is indeed a degree n polynomial,
since there are at most n gates in the formula φ. Thus if

∑
x∈{0,1}n

gφ(x) = k,

an honest prover can convince the verifier with probability 1.
If ∑x∈{0,1}n gφ(x) 6= k, then the if the prover succeeds, it must be

that
f (X) 6= ∑

x2 ,...,xn∈{0,1}n−1

gφ(X , x2 , . . . , xn),

for if the prover is honest, he will be caught immediately.
Since f (X), ∑x2 ,...,xn∈{0,1}n−1 gφ(X , x2 , . . . , xn) are both degree n

polynomials, we have that

Pr
a

 f (a) = ∑
x2 ,...,xn∈{0,1}n−1

gφ(a, x2 , . . . , xn)

 ≤ n/ p,

so with high probability, the prover is left with trying to prove an
incorrect statement in the next step. By the union bound, the proba-
bility that the prover succeeds in any step is at most n2/ p � 1/3 for
large n.

A protocol for TQBF

To handle checking whether a formula of the type

∃xi∀x2∃x3 . . . ∀xnφ(x1, . . . , xn)

is true, it is clear that this is equivalent to checking the identity that

∑
x1

∏
x2

∑
x3

. . . ∏
xn

gφ(x1, . . . , xn) = k > 0.

This is just another polynomial identity, so a first attempt might be
to use a protocol of the following type:

1. Ask the prover for a suitably large prime p, and check that it is
correct. Reject if k < p. All arithmetic is henceforth done modulo
p.

2. If n = 1, check the identity by computing it.

3. If n > 1, ask the prover for the polynomial

f (X) = ∏
x2

∑
x3

. . . ∏
xn

gφ(X, x2, . . . , xn).

4. Check that f (0) + f (1) = k mod p (or f (0) · f (1) = k mod p as
appropriate.
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5. Pick a random element a ∈ Fp and recursively check that

f (a) = ∏
x2

∑
x3

. . . ∏
xn

gφ(a, x2, . . . , xn)

There are several problems with this approach. For one thing the
product term can generate the product of 2n terms giving a number k
that is as large as 22n

. So the prover cannot even write down k using
less than 2n bits, which means that the verifier cannot compute with
it in polynomial time. Similarly, the degree of the polynomial f can
be as large as 2n, so the verifier cannot do any computations with it.

In order to handle the first problem, we appeal to the prime num-
ber theorem and the chinese remainder theorems:

Theorem 5 (Prime Number Theorem). Let π(t) denote the number of
primes in [t]. Then

lim
t→∞

π(t)
t/ ln t

= 1.

The theorem says that Θ(1/n) fraction of all n bit numbers are
prime.

Theorem 6 (Chinese Remainder Theorem). If k is divisible by distinct
primes p1 , . . . , pt , then k must be bigger than the product ∏i pi .

Now consider the set of primes in the interval [2n , 210n ]. By The-
orem 5 there Θ(210n /n) primes that are less than 210n , but at most
2n of them are less than 2n , so this interval must contain Θ(210n /n)
primes. The product of all these primes is at least (2n)Ω(210n /n) =

2Ω(210n ) . Thus, for n large enough, the product is much larger than
∑x1 ∏x2 ∑x3

. . . ∏xn gφ(x1 , . . . , xn) = k. Recall that k ≤ 22n
.

Thus by Theorem 6, if k > 0, there must be some prime p ∈
[2n , 210n ] such that

∑
x1

∏
x2

∑
x3

. . . ∏
xn

gφ(x1 , . . . , xn) = k 6= 0 mod p.

This allows us to fix the first problem: the verifier can ask the prover
to send this prime and the value of k mod p, and perform all arith-
metic modulo p.

Next we turn to the second issue. While it is true that the polyno-
mials generated in the above proof can have high degree, note that
since we are only interested in evaluating the polynomials we are
working with over inputs that are bits, it never makes sense to raise
a variable to degree more than 1: x2 = x for x ∈ {0, 1}. Thus, we
could ask the prover to work with the polynomial that is obtained
from gφ by replacing all high degree terms with terms that have de-
gree 1 in each variable. However, we cannot trust that the prover will
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be honest, so we shall have to check that the prover does this part
correctly.

Given any polynomial g(X1 , . . . , Xn) define the operator L1 as

L1 g(X1 , . . . , Xn) = X1 · g(1, X2 , . . . , Xn) + (1− X1) · g(0, X2 , . . . , Xn).

Then note that L1 g takes on the same value as g when X1 ∈ {0, 1}.
Similarly, we can define Li for each i ∈ [n].

Our final protocol is then as follows. In order to prove that

∑
x1

∏
x2

. . . ∏
xn

gφ(x1 , . . . , xn) 6= 0,

we shall instead ask the prover to prove that

∑
x1

L1 ∏
x2

L1 L2 ∑
x3

L1 L2 L3 ∏
x4

. . . Ln−1 Ln ∏
xn

gφ(x1 , . . . , xn) = k 6= 0 mod p.

In order to describe the protocol, in general we are going to be
trying to prove a statement of the form O1O2Ot gφ(x1 , . . . , xn) = k
mod p, where Oi is either ∑xi

, ∏xi
or Li for some i. Some of the

variables xi may be set to constants ai during this process, but this
will not change the protocol.

The verifier proceeds as follows:

1. Ask the prover for a prime p ∈ [2n , 210n ] and k ∈ [p − 1] such
that

O1O2Ot gφ(x1 , . . . , xn) = k mod p,

2. If t = 1, check the identity by computing it and terminate the
protocol.

3. If O1 is ∑xi
,

(a) Ask the prover for the polynomial

f (X) = O2O3 . . . gφ(x1 , . . . , xi−1 , X , xi+1 , xn),

which is a polynomial of degree at most 2.

(b) Check that f (0) + f (1) = k mod p .

4. If O1 is ∏xi
,

(a) Ask the prover for the polynomial

f (X) = O2O3 . . . gφ(x1 , . . . , xi−1 , X , xi+1 , xn),

which is a polynomial of degree at most 2.

(b) Check that f (0) · f (1) = k mod p .

5. If O1 is Li , then xi = ai has been set to be a constant.
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(a) Ask the prover for the polynomial

f (X) = O2O3 . . . gφ(x1 , . . . , xi−1 , X , xi+1 , xn),

which is a polynomial of degree at most 2.

(b) Check that ai f (0) + (1 − ai) f (1) = k mod p .

6. Pick a random element a ∈ Fp and recursively check that

f (a) = O2O3 . . . gφ(x1 , . . . , xi−1 , a, xi+1 , xn)

As before, an honest prover can convince the verifier with proba-
bility 1. On the other hand, a dishonest prover can succeed only by
sending an incorrect polynomial f , and then such a prover will man-
age to convince the verifier with probability at most O(t/ p) � 1/3.
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