Lecture 16: Parity is not in ACo

Anup Rao

May 22, 2020

The Class $\mathbf{A C}_{\mathbf{0}}$

We start today by giving another beautiful proof that uses algebra. This time it is in the arena of circuits.

We shall work with the circuit class AC_{0} : polynomial sized, constant depth circuits with \wedge, \vee and \neg gates of unbounded fan-in. For example, in this class, we can compute the function $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n}$ using a single \wedge gate. AC_{0} consists of all functions that can be computed using polynomial sized, constant depth circuits of this type.

This class is not as interesting as some of the other ones we have considered. For one thing, its definition is highly basis dependent, namely the set of functions that are computable in $\mathbf{A C}_{0}$ depends strongly on our choice of allowable gates (which is not true of the class of polynomial sized circuits, or circuits of $O(\log n)$ depth, for example). Still, it is challenging enough to prove lowerbounds against this class that we shall learn something interesting in doing so.

Our main goal will be to prove the following theorem:
Theorem 1. The parity of n bits cannot be computed in $\mathbf{A C}_{\mathbf{0}}$.
In order to prove this theorem, we shall once again appeal to polynomials, but carefully, carefully.

The theorem will be proved in two steps:

1. We show that given any $\mathbf{A C}_{0}$ circuit, there is a low degree polynomial that approximates the circuit.
2. We show that parity cannot be approximated by a low degree polynomial.

It will be convenient to work with polynomials over a prime field \mathbb{F}_{p}, where $p \neq 2$ (since there is a polynomial of degree 1 that computes parity over \mathbb{F}_{2}). For concreteness, let us work with \mathbb{F}_{3}.

Some math background

Fact 2. Every function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}$ is computed by a unique polynomial if degree at most $p-1$ in each variable.

Proof Given any $a \in \mathbb{F}_{p}^{n}$, consider the polynomial

$$
1_{a}=\prod_{i=1}^{n} \prod_{z_{i} \in \mathbb{F}_{p}, z_{i} \neq a_{i}} \frac{\left(X_{i}-z_{i}\right)}{\left(a_{i}-z_{i}\right)} .
$$

We have that

$$
1_{a}(b)=\left\{\begin{array}{l}
1 \text { if } a=b, \\
0 \text { else }
\end{array}\right.
$$

Further, each variable has degree at most $p-1$ in each variable.
Now given any function f, we can represent f using the polynomial:

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{a \in \mathbb{F}_{p}^{n}} f(a) \cdot 1_{a} .
$$

To prove that this polynomial is unique, note that the space of polynomials whose degree is at most $p-1$ in each variable is spanned by monomials where the degree in each of the variables is at most $p-1$, so it is a space of dimension p^{n} (i.e. there are $p^{p^{n}}$ monomials). Similarly, the space of functions f is also of dimension p^{n} (there are $p^{p^{n}}$ functions). Thus this correspondence must be one to one.

We shall also need the following estimate on the binomial coefficients, that we do not prove here:

Fact 3. $\binom{n}{i}$ is maximized when $i=n / 2$, and in this case it is at most $O\left(2^{n} / \sqrt{n}\right)$.

A low degree polynomial approximating every circuit in $\mathbf{A C}_{\mathbf{0}}$

Suppose we are given a circuit $\mathcal{C} \in \mathbf{A C}_{\mathbf{0}}$.
We build an approximating polynomial gate by gate. The input gates are easy: x_{i} is a good approximation to the i^{\prime} th input. Similarly, the negation of f_{i} is the same as the polynomial $1-f_{i}$.

The hard case is a function like $f_{1} \vee f_{2} \vee \ldots \vee f_{t}$, which can be computed by a single gate in the circuit. The naive approach would be to use the polynomial $\prod_{i=1}^{t} f_{i}$. However, this gives a polynomial whose degree may be as large as the fan-in of the gate, which is too large for our purposes.

We shall use a clever trick. Let $S \subset[t]$ be a completely random set, and consider the function $\sum_{i \in S} f_{i}$. Then we have the following claim:

Claim 4. If there is some j such that $f_{j} \neq 0$, then $\operatorname{Pr}_{s}\left[\sum_{i \in S} f_{i}=0\right] \leq 1 / 2$.
Proof Observe that for every set $T \subseteq[n]-\{j\}$, it cannot be that both

$$
\sum_{i \in T} f_{i}=0
$$

and

$$
f_{j}+\sum_{i \in T} f_{i}=0 .
$$

Thus, at most half the sets can give a non-zero sum.
Note that

$$
2^{2}=1^{2}=1 \quad \bmod 3
$$

and

$$
0^{2}=0 \quad \bmod 3
$$

So squaring turns non-zero values into 1 . So let us pick independent uniformly random sets $S_{1}, \ldots, S_{\ell} \subseteq[t]$, and use the approximation

$$
g=1-\prod_{k=1}^{\ell}\left(1-\left(\sum_{i \in S_{k}} f_{i}\right)^{2}\right)
$$

Claim 5. If each f_{i} has degree at most r, then g has degree at most $2 \ell r$, and

$$
\operatorname{Pr}\left[g \neq f_{1} \vee f_{2} \vee \ldots \vee f_{t}\right] \leq 2^{-\ell}
$$

Overall, if the circuit is of depth h, and has s gates, this process produces a polynomial whose degree is at most $(2 \ell)^{h}$ that agrees with the circuit on any fixed input except with probability $s 2^{-\ell}$ by the union bound. Thus, in expectation, the polynomial we produce will compute the correct value on a $1-s 2^{-\ell}$ fraction of all inputs.

Setting $\ell=\log ^{2} n$, we obtain a polynomial of degree polylog (n) that agrees with the circuit on all but 1% of the inputs.

Low degree polynomials cannot compute parity

Here we shall prove the following theorem:
Theorem 6. Let f be any polynomial over \mathbb{F}_{3} in n variables whose degree is d. Then f can compute the parity on at most $1 / 2+O(d / \sqrt{n})$ fraction of all inputs.

Proof Consider the polynomial

$$
g\left(Y_{1}, \ldots, Y_{n}\right)=f\left(Y_{1}-1, Y_{2}-1, \ldots, Y_{n}-1\right)+1
$$

The key point is that when $Y_{1}, \ldots, Y_{n} \in\{1,-1\}$, if f computes the parity of n bits, then g computes the product $\prod_{i} Y_{i}$. Thus, we have found a degree d polynomial that can compute the same quantity as the product of n variables. We shall show that this computation cannot work on a large fraction of inputs, using a counting argument.

Let $T \subseteq\{1,-1\}^{n}$ denote the set of inputs for which $g(y)=\prod_{i} y_{i}$. To complete the proof, it will suffice to show that T consists of at most $1 / 2+O(d / \sqrt{n})$ fraction of all strings.

Consider the set of all functions $q: T \rightarrow \mathbb{F}_{3}$. This is a space dimension $|T|$. We shall show how to compute every such function using a low degree polynomial.

By Fact 2, every such function q can be computed by a polynomial. Note that in any such polynomial, since $y_{i} \in\{1,+1\}$, we have that $y_{i}^{2}=1$, so we can assume that each variable has degree at most 1 . Now suppose $I \subseteq[n]$ is a set of size more than $n / 2$, then for $y \in T$,

$$
\prod_{i \in I} y_{i}=\left(\prod_{i=1}^{n} y_{i}\right)\left(\prod_{i \notin I} y_{i}\right)=g(y)\left(\prod_{i \notin I} y_{i}\right)
$$

In this way, we can express every monomial of q with low degree terms, and so obtain a polynomial of degree at most $n / 2+d$ that computes q.

The space of all such polynomials is spanned by $\sum_{i=0}^{n / 2+d}\binom{n}{i}$ monomials. Thus, we get that

$$
\begin{aligned}
|T| & \leq \sum_{i=0}^{n / 2+d}\binom{n}{i} \\
& \leq 2^{n} / 2+\sum_{i=n / 2+1}^{d}\binom{n}{i} \\
& \leq 2^{n} / 2+O\left(d \cdot 2^{n} / \sqrt{n}\right)=2^{n}(1 / 2+O(d / \sqrt{n}))
\end{aligned}
$$

where the last inequality follows from Fact 3 .

