
Lecture 17: Clique requires exponentially large mono-
tone circuits
Anup Rao

May 27, 2020

Given the difficulty of proving lower bounds on general cir-
cuits, most success stories have to do with restricted classes of cir-
cuits. Last time, we considered the setting of linear functions and
linear circuits. Today we shall discuss a different kind of restriction.

A monotone function f : {0, 1}n → {0, 1} is a function that has the
property that increasing the value of any input can only increase the
value of the output. A monotone circuit is a boolean circuit that only
uses ∧ and ∨ gates (recall x ∧ y = 1 if and only if x = y = 1, and
x ∨ y = 0 if and only if x = y = 0).

Claim 1. Every monotone function has a monotone circuit of size 2n.

Many interesting functions are in fact monotone. For example,
the decision version of the CLIQUE problem is a monotone function:
given an input graph, output 1 if and only if the graph has a clique
of size k. Since this problem is NP-hard, showing that there is no
polynomial sized circuit computing it would show that P is not equal
to NP.
Remark By using DeMorgan’s law, and the fact that ∧,∨,¬ form
a boolean basis, you can always rewrite every circuit so that the only
negations are applied directly to the inputs, and the rest of the circuit
is made of ∧ and ∨ gates.

A lower bound for the monotone complexity of CLIQUE

We can represent a graph on n vertices using (n
2) bits where

each bit indicates whether an edge is present or not. Given any graph
G represented this way, and any set S ⊆ [n], set

KS(G) =

1 if G contains a clique on the vertices of S,

0 else.

For a parameter k, set

Kk =
∨

S⊆[n],|S|=k

KS
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to be the function that outputs 1 if and only if the input has a clique
of size k. Both Kk and KS are monotone. Beautiful ideas of Razborov
(that were built on by others) lead to the following theorem:

Theorem 2. Let ε > 0 be any constant. Then for k large enough in terms of
ε, if k < n1/3−ε, any monotone circuit that computes Kk must have size at
least 2

√
k.

In order to motivate some of the ideas in the proof, let us start by
considering a special case. Imagine that we are given a circuit where
the gates can be divided into two layers. The bottom layer is all ∧
gates, and the top layer is all ∨ gates. In other words, there are sets of
edges E1, . . . , Er, and

Kk =
∨

i

∧
e∈Ei

xe.

In this case, we shall try to prove that r must be very large. The
first idea to do this is something that is reminiscent of the lower
bound on the size of a resolution proof for the pigeon hole principle:

Idea 1. We restrict the inputs to be cliques.

Each term
∧

e∈Ei
xe can be made much better if we assume that the

only inputs that have a k-clique will be those that have edges exactly
in one k-clique. Let Si be the set of vertices that are touched by the
edges of Ei. Then under this assumption, we might as well replace
each

∧
e∈Ei

with KSi ! Indeed, if the input does contain a clique, then
by our assumption, the edges of Ei are included only if the edges of
Si are included. On the other hand, if the input does not contain a
clique, KSi is always smaller than

∧
e∈Ei

xe, so our circuit must still
work. Thus we are now left with the circuit∨

i
KSi .

This starts to make the circuit look like the definition of Kk, for which
we know r = (n

k) must be large. Observe that if |Si| < k for some i,
we can make the circuit fail by putting a clique on Si. However, if all
|Si| ≥ k and there are less than (n

k) sets, there must be some k-set that
does not contain any of the Si’s. The circuit will fail on this k-set.

Simple as that proof was, it actually contains the beginnings of
several ideas that are needed in the general case.

The idea is to show that any monotone circuit can be approxi-
mated by an OR of clique functions as before. Given any monotone
circuit of size 2

√
k that computes Kk, we shall show how to approxi-

mate each gate f by a function f ∗ that is either a constant or
∨

i KSi ,
where here |Si| ≤

√
k, and there are at most t terms in the OR. Note

that every monotone function can be written as an OR of AND’s,
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but in general we cannot bound the number of terms by the size
of the circuit. For example the function

∧n
i=1(xi ∨ yi) has 2n terms

when written as an OR of AND’s. This is seems like a major obstacle.
Razborov hurdles by using the sunflower lemma.

Recall that a sunflower (lecture 7) is a collection of sets, where the
i’th set is of the form Zi ∪ C, the Zi’s are disjoint and non-empty and
C is also disjoint from all the Zi’s. The lemma is that if any family of
sets has more than `!(p − 1)` sets of size at most `, then there must
be a sunflower with p petals in the family. Recently there has been a lot of work

on improving the parameters of the
sunflower lemma. See this: https://
www.youtube.com/watch?v=fzmsbylTJKM

If you have the OR of a sunflower of cliques, then you can replace
it with KC, where C is the core. This can only increase the value of
the circuit. Maybe it will increase it too much? To avoid this danger,
we restrict our clique-free inputs as well. We shall focus on graphs
that are (k − 1)-partite (and hence do not have a k-clique). Then we
have the following lemmas:

Lemma 3. If G is a random (k− 1)-partite graph, and S ⊆ [n] is a set with
|S| ≤

√
k, then Pr [KS(G) = 1] > 1/2.

Proof The probability that any fixed pair of vertices is excluded
in a random (k − 1)-partite graph is exactly 1/(k − 1). Thus the
probability that any edge is excluded is at most(√

k
2

)
/(k− 1) = (1/2)(k−

√
k)/(k− 1) < 1/2.

Lemma 4. If U1, . . . , Up are a sunflower with core C and sets of size
≤
√

k, then
∨

i KUi ≤ KC, and if G is a random (k − 1)-partite graph,
Pr
[∨

i KUi (G) < KC(G)
]
< 2−p.

Proof If there is a clique on any Ui, then there is certainly a clique
on C, so KC ≥ KUi . Sample a random (k− 1)-partite graph by color-
ing each of the vertices of C with colors from [k− 1], and then do the
same for the rest of the graph. We have

Pr[KUi (G) = 1] = Pr[KC(G) = 1] · Pr[KUi (G) = 1|KC(G) = 1].

By Lemma 3, Pr[KUi (G) = 1] > 1/2, so Pr[KUi (G) = 0|KC(G) = 1] <
1/2. Given the coloring on C, the events KUi (G) = 1 are mutually
independent. Thus

Pr

[∨
i

KUi (G) = 0
∣∣∣KC(G) = 1

]
< 2−p.

https://www.youtube.com/watch?v=fzmsbylTJKM
https://www.youtube.com/watch?v=fzmsbylTJKM
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Lemma 4 means we can always replace a sunflower configuration
in our approximators by the core. In order to use the lemma, for a
small positive constant α > 0, we set

t = 2(1+α)
√

k log k ≥ (
√

k)! · (3
√

k log k)
√

k,

which will guarantee that (for k large enough), any t sets of size
√

k
contain a sunflower with p = 3 ·

√
k log k petals. Next we formally

define the approximating functions.

• If f = xe is an input variable corresponding to the edge e, then it
computes the function f ∗ = Ke.

• If f = g ∨ h,
g∗ ∨ h∗ = KU1 ∨ · · · ∨ KUc ,

where the Ui’s are distinct sets. f ∗ is obtained by repeatedly re-
placing the sunflowers with their cores until there are no more
sunflowers (this may result in f ∗ = 1).

• If f = g ∧ h,
g∗ ∧ h∗ =

∨
i,j

KSi ∧ KTj .

In this case, we shall do three approximation steps:

1. a∗ is obtained by replacing each term KSi ∧ KTj with KSi∪Tj .

2. b∗ is obtained by dropping all terms KU , where |U| >
√

k (if all
sets are dropped we are left with the function 0).

3. f ∗ is obtained by repeatedly replacing the sunflowers with their
cores until there are no more sunflowers (this may result in
f ∗ = 1).

In this way we have defined an approximation f ∗ for every gate f of
the circuit. Let q denote the output gate of the circuit.

The structure of the rest of the proof will be similar to our warm-
up case. We shall first show the following two lemmas:

Lemma 5. If G is a random (k − 1)-partite graph, then Pr[q∗(G) >

q(G)] < 1/2.

Lemma 6. q∗ 6= 0.

If q∗ 6= 0, then Lemma 3 implies that q∗ accepts a random (k− 1)-
partite graph with probability at least 1/2, which implies that q(G) =

1 for some (k − 1)-partite graph, a contradiction. Next we prove the
two lemmas.

Proof of Lemma 5 We proceed inductively on the gates of the
circuit.
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• For an input gate f , f ∗ = f , so the lemma is true.

• If f = g∨ h, by Lemma 4, replacing each sunflower by its core does
not change its value except with probability 2−p. Since there are at
most t2 replacement steps,

Pr[ f ∗(G) 6= g∗(G) ∧ h∗(G)] < t22−p.

• If f = g ∧ h,

1. KSi (G) ∧ KTj(G) ≥ KSi∪Tj(G), so a∗(G) ≤ g∗(G) ∧ h∗(G).

2. Dropping terms can only decrease the value, so b∗(G) ≤
a∗(G) ≤ g∗(G) ∧ h∗(G).

3. By Lemma 4, Pr[ f ∗(G) 6= b∗(G)] < t22−p.

By the union bound,

Pr[q∗(G) > q(G)] < 2
√

kt22−p

≤ 2
√

k+2(1+α)
√

k log k−3
√

k log k < 1/2.

Proof of Lemma 6 We claim that there there is a k-clique G such
that q∗(G) ≥ q(G) = 1. G will be a k-clique that does not contain any
set U dropped in approximating the ∧ functions. Indeed, each ∧ can
generate at most t2 sets U that are dropped. Each such U is contained

in exactly (
n−
√

k
k−
√

k) sets of size k. We have,

2
√

kt2(
n−
√

k
k−
√

k)

(n
k)

< t2
(

2k
n−
√

k

)√k

< t2
(

4k
n

)√k

≤ 2
√

k(2+(3+2α) log k−log n) < 1,

for α small enough, since k < n1/3−ε.
So such a k-clique G does exist. We shall prove inductively that

f ∗(G) ≥ f (G) for every gate f of the circuit, which will prove the
lemma.

• For any input gate f , f = f ∗.

• If f = g ∨ h, by Lemma 4, f ∗(G) ≥ g∗(G) ∨ h∗(G) ≥ g(G) ∨ h(G).

• If f = g ∧ h,

1. For any sets Si, Tj, KSi (G) ∧ KTj(G) = KSi∪Tj(G), so a∗(G) =

g∗(G) ∧ h∗(G).
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2. Since G does not contain any clique U that has been dropped,
b∗(G) = a∗(G) = g∗(G) ∧ h∗(G).

3. By Lemma 4, f ∗(G) ≥ b∗(G) = g∗(G) ∧ h∗(G) ≥ g(G) ∧ h(G).
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