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Given the difficulty of proving lower bounds on boolean cir-
cuits, we have been studying boolean circuits with some restrictions.
So far, we have talked about formulas (which restrict the circuit to
be a tree), AC0 (where the number of alternations is bounded) and
monotone circuits (where there are no negations). Today, we discuss
another model, the model of arithmetic circuits.

An arithmetic circuit is just like a normal circuit, except that each
gate computes either the sum or product of its inputs, and out-
puts the corresponding integer. We allow arbitrary constants to be One can view the circuits as operating

over any field, but here we work over
the real numbers.

plugged in as inputs as well. So far, the model is the same as boolean
circuits, since when computing f : {0, 1}n → {0, 1}, every arithmetic
circuit can be converted into a boolean circuit and vica versa, without
changing the size by too much. The product of two bits is the same as

the AND of two bits. The sum may be
an integer, but it is enough to carry out
the computation modulo 2, so this can
also be simulated by a boolean circuit.

The key difference is that we shall think of the circuit as comput-
ing a formal multivariate polynomial f (X). We require that the poly-
nomial corresponding to the output gate is the correct one, which is
much stronger than asking for the output to be correct on boolean
inputs.

Monotone Lower bound for Permanent

We start by proving a lower bound for computing the perma-
nent of a matrix. Recall that the permanent is the polynomial

PERM(X) = ∑
σ

n

∏
i=1

Xi,σ(i),

where the sum is taken over all permuatations σ : {1, 2, . . . , n} →
{1, 2, . . . , n}.

We prove the following theorem:

Theorem 1. If an arithmetic circuit computes the permanent over the reals,
and it does not use any negative constants, then its size must be at least
( n

n/3) ≥ 2Ω(n).

The proof has two steps. In the first step, we show the following
claim:
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Lemma 2. If PERM(X) can be computed by a circuit of size s with no
negative constants, then we can express

PERM(X) =
s

∑
j=1

uj(X) · vj(X),

where here the degree of each uj(X) is in between n/3 and 2n/3, and all
coefficients are non-negative.

Let us start by showing how to use the lemma to complete the
proof. Consider a particular pair uj(X), vj(X). Since all the coeffi-
cients in these polynomials are non-negative, the set of monomial
in the product uj(X)vj(X) must be a subset of the monomials in the
permanent. Say that monomial touches a row if it contains a variable
from the row. For each monomial in uj(X), the set of rows touched
by this monomial must be the complement of the set of rows touched
by vj(X), and the same holds for the columns. The only way this
can happen is if there are k rows A and k columns B such that uj

only touches the rows and columns corresponding to A, B, and vj

touches the rows and columns corresponding to the complemen-
tary rows and columns. Moreover, by the lemma, we must have that
n/3 ≤ k ≤ 2n/3.

This means that the total number of monomials contributed by
uj(X)vj(X) is at most

k! · (n− k)! = n!/
(

n
k

)
≤ n!/

(
n

n/3

)
.

Since the permanent has n! monomials, we conclude that s ≥ ( n
n/3).

It only remains to prove the lemma.
Proof The proof has a similar idea to something you did in your
homework. Let g0, g1, . . . be a sequence of gates in the circuit, where
g0 is the output gate, and gi is the input to gi−1 of maximal degree.
The degrees of the polynomials in this sequence can only decrease by
a factor of two in each step, and the degree of the input variables is
1, so at some point, there must be a gate gi whose degree is ≥ 2n/3,
and yet gi+1 has degree in between n/3 and 2n/3.

Now if we substitute a new variable Y for gi in the circuit, the
output gate must be a new polynomial f (X, Y) whose degree in Y
can be at most 1, since Y corresponds to a gate of degree ≥ 2n/3.
So, we can write PERM(X) = a(X) + b(X).gi(X) = a(X) +

b(X)b′(X)gi+1(X). Let u1(X) = gi+1(X), v1(X) = b(X)b′(X). If
we substitute Y = 0 in f (X, Y), we get f (X, 0) = a(X), and a(X)

can be computed by an arithmetic circuit of size s− 1. So, proceeding
inductively, we obtain that PERM(X) = ∑s

j=1 uj(X)vj(X) as required.
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