Lecture 2: Barrington's Theorem Anup Rao April 3, 2020

NATURAL MODELS OFTEN HAVE UNEXPECTED connections between them. Let us take a brief interlude to explore one such unexpected connection between branching programs and circuits, that was discovered by Barrington. Barrington showed:

Theorem 1. If $f : \{0,1\}^n \to \{0,1\}$ can be computed by a circuit of depth *d*, then it can be computed by a branching program of width 5 and length $O(4^d)$.

This is a really powerful statement. It is especially useful if you want to prove lower bounds — if you want to show that a function cannot be computed in small depth, you can try to prove that the function cannot be computed using a small width branching program of small length. It is much easier to show the converse of the theorem:

Theorem 2. If $f : \{0,1\}^n \to \{0,1\}$ can be computed by a branching program of width O(1) and length 2^d , then it can be computed by a circuit of depth O(d).

Sketch of Proof Every width w branching program can be thought of as computing a function $g_x : [w] \to [w]$, where x is the input to the program. We shall prove inductively that you can compute the function g_x in depth Cd, for some large constant C.

The idea is to break up the program into the first half of the program, which computes h_x , and the second half, which computes q_x . Then $g_x = h_x \circ q_x$ is composition of these two functions. We recursively compute h_x and q_x . This computation should take depth C(d-1). Then we use a constant number of gates to compute g_x from the descriptions of the two functions. Since the width is just a constant, this takes depth *C* for some constant *C*. Our final depth is C(d-1) + C = C(d).

Now, let us turn to proving Theorem 1.

Proof We are given a circuit of depth *d* computing *f* and need to compute the same function using a width 5 branching program. We shall restrict our attention to width 5 branching programs that compute permutations of $[5] = \{1, 2, 3, 4, 5\}$. Before we give the construction, we need to describe some nice properties of *cyclic* permutations.

A cyclic permutation is a permutation π with the property that if you start at 1, and keep applying the permutation, you eventually The theorem is not known to hold with width 4.

Figure 1: Two cyclic permutations.

visit all elements of [5]. For example, the permutation shown in Figure 1 are cyclic. Here are some nice properties of cyclic permutations. These are all easy to verify, but we leave it as an exercise to do it:

- If π, σ are cyclic, then so is $\pi \circ \sigma = \pi \sigma$.
- If π is cyclic, then so is π^{-1} .
- There are two cyclic permutations of [5], π , σ with the property that $\pi\sigma\pi^{-1}\sigma^{-1}$ is another cyclic permutation. This will be called the *commutator property* below. For example, set $\pi = (12345), \sigma = (13542)$, and then the composition is (13254).
- For any two cyclic permutations π , σ , there is a permutation τ (not necessarily cyclic), such that $\tau \pi \tau^{-1} = \sigma$. This we be called conjugation.

Now, for the purpose of carrying out the proof, we shall design a branching progam that on input *x* computes a permutation π_x , such that if f(x) = 0, then π_x is the identity permutation, but if f(x) = 1, then π_x is a fixed cyclic permutation, say $\gamma = (12345)$. This branching program computes f(x).

Suppose we have already made a program computing π_x that represents g(x), and we want to compute $\neg g(x)$. To do this, we simply add a layer that computes γ^{-1} . The new program computes $\pi_x \gamma^{-1}$. Call the new program σ_x . If g(x) is 0, $\sigma_x = \gamma^{-1}$, and if g(x) = 1, σ_x is the identity permutation. Now, by conjugation, there is another permuation τ such that $\tau \gamma^{-1} \tau^{-1} = \gamma$. We apply two more layers to implement this, and so recover the program that corresponds to $\neg g(x)$.

Suppose the final gate of the circuit is a \land gate. So, the final output is $f(x) = g(x) \land h(x)$. Then, by induction we have two programs, one computing π_x that corresponds to g(x), and the other computing σ_x that corresponds to h(x). After doing some conjugation, we can ensure that if g(x) = h(x) = 1, then π_x, σ_x satisfy the commutator property. If either of them is the identity, then we have $\pi_x \sigma_x \pi_x^{-1} \sigma_x^{-1}$ is also the identity. So, we get that $\pi_x \sigma_x \pi_x^{-1} \sigma_x^{-1}$ is cyclic if and only if f(x) = 1. Applying another conjugation gives us back the final program.

Gates that compute \lor can be handled using the above methods, since $g(x) \lor h(x) = \neg(\neg g(x) \land \neg h(x))$.

We see that the length of the program generated in the above process satisfies $\ell_d \leq 4\ell_{d-1} + O(1)$. The solution to this recurrence is $\ell_d \leq O(4^d)$.