Lecture 2: Barrington's Theorem

Anup Rao
April 3, 2020

Natural models often have unexpected connections between them. Let us take a brief interlude to explore one such unexpected connection between branching programs and circuits, that was discovered by Barrington. Barrington showed:

Theorem 1. If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed by a circuit of depth d, then it can be computed by a branching program of width 5 and length $O\left(4^{d}\right)$.

This is a really powerful statement. It is especially useful if you want to prove lower bounds - if you want to show that a function cannot be computed in small depth, you can try to prove that the function cannot be computed using a small width branching program of small length. It is much easier to show the converse of the theorem:

Theorem 2. If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed by a branching program of width $O(1)$ and length 2^{d}, then it can be computed by a circuit of depth $O(d)$.

Sketch of Proof Every width w branching program can be thought of as computing a function $g_{x}:[w] \rightarrow[w]$, where x is the input to the program. We shall prove inductively that you can compute the function g_{x} in depth $C d$, for some large constant C.

The idea is to break up the program into the first half of the program, which computes h_{x}, and the second half, which computes q_{x}. Then $g_{x}=h_{x} \circ q_{x}$ is composition of these two functions. We recursively compute h_{x} and q_{x}. This computation should take depth $C(d-1)$. Then we use a constant number of gates to compute g_{x} from the descriptions of the two functions. Since the width is just a constant, this takes depth C for some constant C. Our final depth is $C(d-1)+C=C(d)$.

Now, let us turn to proving Theorem 1.
Proof We are given a circuit of depth d computing f and need to compute the same function using a width 5 branching program. We shall restrict our attention to width 5 branching programs that compute permutations of $[5]=\{1,2,3,4,5\}$. Before we give the construction, we need to describe some nice properties of cyclic permutations.

A cyclic permutation is a permutation π with the property that if you start at 1 , and keep applying the permutation, you eventually

The theorem is not known to hold with width 4.

Figure 1: Two cyclic permutations.
visit all elements of [5]. For example, the permutation shown in Figure 1 are cyclic. Here are some nice properties of cyclic permutations. These are all easy to verify, but we leave it as an exercise to do it:

- If π, σ are cyclic, then so is $\pi \circ \sigma=\pi \sigma$.
- If π is cyclic, then so is π^{-1}.
- There are two cyclic permutations of [5], π, σ with the property that $\pi \sigma \pi^{-1} \sigma^{-1}$ is another cyclic permutation. This will be called the commutator property below. For example, set $\pi=(12345), \sigma=$ (13542), and then the composition is (13254).
- For any two cyclic permutations π, σ, there is a permutation τ (not necessarily cyclic), such that $\tau \pi \tau^{-1}=\sigma$. This we be called conjugation.

Now, for the purpose of carrying out the proof, we shall design a branching progam that on input x computes a permutation π_{x}, such that if $f(x)=0$, then π_{x} is the identity permutation, but if $f(x)=1$, then π_{x} is a fixed cyclic permutation, say $\gamma=(12345)$. This branching program computes $f(x)$.

Suppose we have already made a program computing π_{x} that represents $g(x)$, and we want to compute $\neg g(x)$. To do this, we simply add a layer that computes γ^{-1}. The new program computes $\pi_{x} \gamma^{-1}$. Call the new program σ_{x}. If $g(x)$ is $0, \sigma_{x}=\gamma^{-1}$, and if $g(x)=1$, σ_{x} is the identity permutation. Now, by conjugation, there is another permuation τ such that $\tau \gamma^{-1} \tau^{-1}=\gamma$. We apply two more layers to implement this, and so recover the program that corresponds to $\neg g(x)$.

Suppose the final gate of the circuit is a \wedge gate. So, the final output is $f(x)=g(x) \wedge h(x)$. Then, by induction we have two programs, one computing π_{x} that corresponds to $g(x)$, and the other computing σ_{x} that corresponds to $h(x)$. After doing some conjugation, we can ensure that if $g(x)=h(x)=1$, then π_{x}, σ_{x} satisfy the commutator property. If either of them is the identity, then we have $\pi_{x} \sigma_{x} \pi_{x}^{-1} \sigma_{x}^{-1}$ is also the identity. So, we get that $\pi_{x} \sigma_{x} \pi_{x}^{-1} \sigma_{x}^{-1}$ is cyclic if and only if $f(x)=1$. Applying another conjugation gives us back the final program.

Gates that compute \vee can be handled using the above methods, since $g(x) \vee h(x)=\neg(\neg g(x) \wedge \neg h(x))$.

We see that the length of the program generated in the above process satisfies $\ell_{d} \leq 4 \ell_{d-1}+O(1)$. The solution to this recurrence is $\ell_{d} \leq O\left(4^{d}\right)$.

