
Lecture 2: Barrington’s Theorem
Anup Rao

April 3, 2020

Natural models often have unexpected connections between
them. Let us take a brief interlude to explore one such unexpected
connection between branching programs and circuits, that was dis-
covered by Barrington. Barrington showed:

Theorem 1. If f : {0, 1}n → {0, 1} can be computed by a circuit of depth
d, then it can be computed by a branching program of width 5 and length
O(4d).

The theorem is not known to hold with
width 4.This is a really powerful statement. It is especially useful if you

want to prove lower bounds — if you want to show that a function
cannot be computed in small depth, you can try to prove that the
function cannot be computed using a small width branching pro-
gram of small length. It is much easier to show the converse of the
theorem:

Theorem 2. If f : {0, 1}n → {0, 1} can be computed by a branching
program of width O(1) and length 2d, then it can be computed by a circuit
of depth O(d).

Sketch of Proof Every width w branching program can be thought
of as computing a function gx : [w] → [w], where x is the input to
the program. We shall prove inductively that you can compute the
function gx in depth Cd, for some large constant C.

The idea is to break up the program into the first half of the pro-
gram, which computes hx, and the second half, which computes qx.
Then gx = hx ◦ qx is composition of these two functions. We re-
cursively compute hx and qx. This computation should take depth
C(d − 1). Then we use a constant number of gates to compute gx

from the descriptions of the two functions. Since the width is just a
constant, this takes depth C for some constant C. Our final depth is
C(d− 1) + C = C(d).

Now, let us turn to proving Theorem 1.
Proof We are given a circuit of depth d computing f and need to
compute the same function using a width 5 branching program. We
shall restrict our attention to width 5 branching programs that com-
pute permutations of [5] = {1, 2, 3, 4, 5}. Before we give the construc-
tion, we need to describe some nice properties of cyclic permutations.

1

25

4 3

5

34

2 1
Figure 1: Two cyclic permutations.

A cyclic permutation is a permutation π with the property that
if you start at 1, and keep applying the permutation, you eventually



lecture 2: barrington’s theorem 2

visit all elements of [5]. For example, the permutation shown in Fig-
ure 1 are cyclic. Here are some nice properties of cyclic permutations.
These are all easy to verify, but we leave it as an exercise to do it:

• If π, σ are cyclic, then so is π ◦ σ = πσ.

• If π is cyclic, then so is π−1.

• There are two cyclic permutations of [5], π, σ with the property
that πσπ−1σ−1 is another cyclic permutation. This will be called
the commutator property below. For example, set π = (12345), σ =

(13542), and then the composition is (13254).

• For any two cyclic permutations π, σ, there is a permutation τ

(not necessarily cyclic), such that τπτ−1 = σ. This we be called
conjugation.

Now, for the purpose of carrying out the proof, we shall design a
branching progam that on input x computes a permutation πx, such
that if f (x) = 0, then πx is the identity permutation, but if f (x) = 1,
then πx is a fixed cyclic permutation, say γ = (12345). This branch-
ing program computes f (x).

Suppose we have already made a program computing πx that rep-
resents g(x), and we want to compute ¬g(x). To do this, we simply
add a layer that computes γ−1. The new program computes πxγ−1.
Call the new program σx. If g(x) is 0, σx = γ−1, and if g(x) = 1,
σx is the identity permutation. Now, by conjugation, there is another
permuation τ such that τγ−1τ−1 = γ. We apply two more layers
to implement this, and so recover the program that corresponds to
¬g(x).

Suppose the final gate of the circuit is a ∧ gate. So, the final output
is f (x) = g(x) ∧ h(x). Then, by induction we have two programs,
one computing πx that corresponds to g(x), and the other computing
σx that corresponds to h(x). After doing some conjugation, we can
ensure that if g(x) = h(x) = 1, then πx, σx satisfy the commutator
property. If either of them is the identity, then we have πxσxπ−1

x σ−1
x

is also the identity. So, we get that πxσxπ−1
x σ−1

x is cyclic if and only
if f (x) = 1. Applying another conjugation gives us back the final
program.

Gates that compute ∨ can be handled using the above methods,
since g(x) ∨ h(x) = ¬(¬g(x) ∧ ¬h(x)).

We see that the length of the program generated in the above
process satisfies `d ≤ 4`d−1 + O(1). The solution to this recurrence is
`d ≤ O(4d).


