
Lecture 3: Turing Machines
Anup Rao

April 8, 2020

We have the following easy relationship between the size
and depth of a circuit. Essentially, the size is at most exponential in
the depth, since the worst case is that the circuit looks like the full
binary tree:

Fact 1. Every function computed by a circuit of depth d can be computed by
a circuit of size at most 2d+1.

Proof We prove by induction on the depth that the circuit can be
computed using at most 2d + 2d−1 + . . . + 1 = 2d+1 − 1 gates. When
the depth d = 0, the circuit must just output the value of a variable,
and so has size at most 1.

When d > 1, consider the output gate. This gate has two gates
that feed into it, each of depth at most d − 1. So by induction, the
computations of each of those gates can be carried out by circuits of
size 2d−1 + 2d−2 + . . . + 1. Thus the overall circuit can be computed
with size 1 + 2 ·

(
2d−1 + 2d−2 + . . . + 1

)
= 2d + 2d−1 + . . . + 1, as

required.
Can we prove the converse? Is it true
that every function that can be com-
puted by a circuit of size s can be com-
puted by a circuit of depth O(log s)?
Surprisingly, we have no idea how to
prove or disprove that statement. Most
people believe that it is not true—for it
would imply that any algorithm can be
parallelized to be exponentially faster!

Complexity of functions

Given a function f : {0, 1}∗ → {0, 1}, we say that the function has a
size s(n) circuit family if for every n, there is a circuit of size s(n) that
computes the function correctly on inputs of length n. Similarly, we
can talk about the depth complexity of computing a function, and the
length and width complexity of the function in terms of branching
programs.

Open Problems

One of the reasons I am drawn to complexity theory is that it
is the source of many extremely basic open questions. These are
questions that are very practically motivated, very easy to state, but
no one has a clue about how to solve them.

Having seen the description of circuits and branching program,
we can already know enough to state some really fundamental open
problems.

lecture 3: turing machines 2

It is open to find any explicit function that cannot be computed Explicit here means a function that can
be succinctly described. For example, as
we shall discuss soon, we do know that
a random function cannot be computed
with small complexity, using counting
arguments. But these arguments do not
tell you anything about any particular
fixed function.

by circuits whose size is O(n) and depth is O(log n), simultaneously.
Note that the size has to be n if the function depends on all its inputs,
and the depth has to be Ω(log n) if the function depends on all its
inputs. So, it is basically open to find any non-trivial circuit lower
bound. We do know some highly non-trivial constructions of low-
depth circuits. Just a couple of few years ago, Fenner, Gurjar and
Thierauf [FGT16] showed that deciding whether or not a bipartite
graph has a perfect matching or not can be done in depth O(log2 n).
The result was later strengthened to handle arbitrary graphs [ST17].
But can such a natural problem be solved in depth O(log n)?

We have seen that every circuit of depth d can be computed by a
circuit of depth 2d. How about the converse? Can every circuit of size
2d be computed by a circuit of depth O(d)? This would be extremely
useful — it would show that every algorithm can be parallelized.
Most people would believe that this is impossible, but it is open to
understand this one way or another.

It is open to find any explicit function that does not admit a
branching program of width O(1) and length O(n log3 n). We do
know of a function that requires Ω(n log2 n) length.

Turing Machines

A Turing Machine is essentially a program written in a par-
ticular programming language. The program has access to three
arrays and three pointers:

• x which is accessed using the pointer i. x is an array that can be
read but not written into.

• y which is accessed using the pointer j. y can be read and written
into.

• z which is accessed using the pointer k. z can only be written into.

The machine is described by its code. Each line of code reads the
bits xi, yj, zk, and based on those values, writes new bits into yj, zk,
and then possibly after incrementing or decrementing i, j, k, jumps
to a different line of code or stops computing. Initially, the input is
written in x and the goal is for the output to be written in z at the
end. i, j, k are all set to 1 to begin with. The arrays all have a special
symbol to denote the beginning of the tape and a special symbol to
denote the blank parts of the tape.

For example here is a program that copies the input to the output
using a single line:

lecture 3: turing machines 3

1. If xi is empty, then HALT. Else set zk = xi and increment each of
i, k. Jump to step 1.

Here is another that outputs the input bits which are in odd loca-
tions:

1. If xi is empty, then HALT. Else set zk = xi, increment each of i, k
and jump to step 2.

2. If xi is empty, then HALT. Else increment each of i, k and jump to
step 1.

The exact details of this model are not important. The main reason
we introduce it is to have a fixed model of computation in mind. For
example, it is easy to show that adding more tapes or increasing the
alphabet size does not change the model significantly, as we shall
discuss further next time.

Resources of Turing Machines

Once we have fixed the model, we can start talking about the com-
plexity of computing a particular function f : {0, 1}∗ → {0, 1}. Fix
a turing machine M that computes a function f . There are two main
things that we can measure:

• Time. We can measure how many steps the turing machine takes
in order to halt. Formally, the machine has running time T(n) if on
every input of length n, it halts within T(n) steps.

• Space. We can measure the maximum value of j during the run of
the turing machine. We say the space is S(n) if on every input of
length n, j never exceeds S(n).

The following fact is immediate:

Fact 2. The space used by a machine is at most the time it takes for the
machine to run.

Robustness of the model: Extended Church-Turing Thesis

The reason Turing machines are so important is because of
the Extended Church-Turing Thesis. The thesis says that every efficient
computational process can be simulated using an efficient Turing
machine as formalized above. Here we say that a Turing machine is The original (non-extended) thesis

made a much tamer claim: that any
computation that can be carried out by
a human can be carried out by a Turing
machine.

efficient if it carries out the computation in polynomial time.

lecture 3: turing machines 4

The Church-Turing Thesis is not a mathematical claim, but a wishy
washy philosophical claim about the nature of the universe. As far
as we know so far, it is a sound one. In particular if one changed
the above model slightly (say by providing 10 arrays to the machine
instead of just 3, or by allowing it to run in parallel), then one can
simulate any program in the new model using a program in the
model we have chosen.

Claim 3. A program written using symbols from a larger alphabet Γ that
runs in time T(n) can be simulated by a machine using the binary alphabet
in time O(log |Γ| · T(n)).

Sketch of Proof We encode every element of the old alphabet in
binary. This requires O(log |Γ|) bits to encode each alphabet sym-
bol. Each step of the original machine can then be simulated using
O(log |Γ|) steps of the new machine.

Claim 4. A program written for an L-tape machine that runs in time T(n)
can be simulated by a program for a 3-tape machine in time O(L · T(n)2).

Sketch of Proof The idea is to encode the contents of all the new
work arrays into a single work tape. To do this, we can use the first
L locations on the work tape to store the first bit from each of the L
arrays, then the next L locations to store the second bit from each of
the L arrays, and so on. To encode the location of the pointers, we
increase the size of the alphabet so that exactly one symbol from each
tape is colored red. This encodes the fact that the pointer points to
this symbol of the tape. The actual pointer in the new Turing ma-
chine will then do a big left to right sweep of the array to simulate a
single operation of the old machine.

The following theorem should not come as a surprise to most of
you. It says that there is a machine that can compile and run the code
of any other machine efficiently:

Theorem 5. There is a turing machine M such that given the code of
any Turing machine α and an input x as input to M, if α takes T steps to
compute an output for x, then M computes the same output in O(CT log T)
steps, where here C is a number that depends only on α and not on x.

We shall say that a machine runs in time t(n) if for every input
x, the machine halts after t(|x|) steps (here |x| is the length of the
string x). Similarly, we can measure the space complexity of the ma-
chine. The crucial point is that small changes to the model of Turing
machines does not affect the time/space complexity of computing
a particular function in a big way. Thus it makes sense to talk about
the running time for computing a function f , and this measure is not
really model dependent.

lecture 3: turing machines 5

References

[FGT16] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf.
Bipartite perfect matching is in quasi-nc. In Daniel Wichs
and Yishay Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 754–763.
ACM, 2016.

[ST17] Ola Svensson and Jakub Tarnawski. The matching problem
in general graphs is in quasi-nc. In Chris Umans, editor,
58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 696–707. IEEE Computer Society, 2017.

	Complexity of functions
	Open Problems
	Turing Machines
	Resources of Turing Machines
	Robustness of the model: Extended Church-Turing Thesis

