
CSE531: Computational Complexity Theory January 4, 2012

Lecture 1 Turing Machines and Circuits

Lecturer: Anup Rao

1 What is Computation?

Our goal is to model the complexity involved in carrying out computation, though we shall not
formally define exactly what computation is. Informally, a computational process is any process
that manipulates information in some way. For example, when reading this sentence, your brain
takes the information encoded graphically and translates that information into letter, words and
ideas, and so performs a computation. One can think of the weather as a computational process:
given the current state of clouds, ocean currents and many other factors, the laws of the universe
produce an outcome that uses the information about the current state to generate a new state. At
this point you may argue that we have made the model too general to be useful, so it might be
useful to explain what is not computation.

A useful mathematical abstraction that captures some of the things we have discussed is the
abstraction of functions. Given two sets D,R, a function f : D → R assigns a value f(x) ∈ R
to every element of x ∈ D. So if we think of D as the set of all possible images, and R as the
set of all sentences, f can be defined to be the function that maps the picture of a sentence to
the actual sentence. This abstraction misses something that is inherent about physical processes:
computations are local. At any point, the state of two parts of the brain that are far away from each
other cannot affect each other. A computational process is a process that manipulates information
in this local way.

2 Computational Complexity

We would like to be able to distinguish computational processes that are doing something compli-
cated from processes that are doing something simple. For example, we are very good at reading
text, but multiplying 100 digit numbers takes us considerably more time, even though the amount
of information is contained in a picture is much more than the information contained in a 100 digit
number. What makes some things easy and other things hard?

In order to tackle this kind of question, we first need mathematical models that captures exactly
what a computational process is. We would like our models to be general enough that they cap-
ture most real computational processes, and simple enough that we can ask and understand easy
questions about them. A crucial issue is how the information being manipulated is encoded. For
example, if numbers are encoded using their prime factorization (both in the input and output),
then it is slightly easier for us to multiply two 100 digit numbers than if they are encoded using
their digits.

So given a function f : D → R, we would like to be able to quantify how difficult it is to
compute this function. We shall make two immediate simplifications.

• We shall identify the the input domain with the set of binary strings {0, 1}∗. Since every
countable set can be mapped to this set, this does not lose too much generality.

1 Turing Machines and Circuits-1

• We shall restrict the output domain to be R = {0, 1}. This does lose some generality, but
it will turn out that most of our ideas will easily translate to the situation when the output
domain is bigger. Further, for most examples of functions to bigger domains that are hard
to compute, we shall be able to easily find corresponding boolean functions that are hard to
compute.

2.1 A uniform model: Turing Machines

A Turing Machine is essentially a program written in a particular programming language. The
program has access to three arrays and three pointers:

• x which is accessed using the pointer i. x is an array that can be read but not written into.

• y which is accessed using the pointer j. y can be read and written.

• z which is accessed using the pointer k. z can be both read and written.

The machine is described by its code. Each line of code reads the bits xi, yj , zk, and based
on those values, writes new bits into yj , zk, and then possibly after incrementing or decrementing
i, j, k, jumps to a different line of code or stops computing. Initially, the input is written in x and
the goal is for the output to be written in z at the end. i, j, k are all set to 1 to begin with.

For example here is a program that copies the input to the output using a single line:

1. If xi is empty, then HALT. Else set zk = xi and increment each of i, k.

Here is another that outputs the input bits which are in odd locations:

1. If xi is empty, then HALT. Else set zk = xi, increment each of i, k and jump to step 2.

2. If xi is empty, then HALT. Else increment each of i, k and jump to step 1.

The exact details of this model are not important. The main reason we introduce it is to have
a fixed model of computation in mind.

The reason this model is so powerful is because of the Church-Turing Thesis. The thesis says
that every computational process can be modeled using a Turing machine as formalized above.
Again, this is not a mathematical claim, but a wishy washy philosophical claim about the nature
of the universe. As far as we know so far, it is a sound one. In particular if one changed the above
model slightly (say by providing 10 arrays to the machine instead of just 3, or by allowing it to run
in parallel), then one can simulate any program in the new model using a program in the model
we have chosen. A lot of work has gone into proving that that the above model is universal in this
sense, but we ignore the details.

Once we have fixed the model, we can start talking about the complexity of computing a
particular function f : {0, 1}∗ → {0, 1}. Fix a turing machine M that computes a function f .
There are two main things that we can measure:

• Time. We can measure many steps the turing machine takes in order to halt.

• Space. We can measure the maximum value of j during the run of the turing machine.

1 Turing Machines and Circuits-2

The following fact is immediate:

Fact 1. The space used by a machine is at most the time it takes for the machine to run.

The following theorem should not come as a surprise to most of you. It says that there is a
machine that can compile and run the code of any other machine efficiently:

Theorem 2. There is a turing machine M such that given the code of any Turing machine α and
an input x as input to M , if α takes T steps to compute an output for x, then M computes the
same output in O(CT log T) steps, where here C is a number that depends only on α and not on x.

We shall say that a machine runs in time t(n) if for every input x, the machine halts after t(|x|)
steps (here |x| is the length of the string x). Similarly, we can measure the space complexity of the
machine. The crucial point is that small changes to the model of Turing machines does not affect
the time/space complexity of computing a particular function in a big way. Thus it makes sense
to talk about the running time for computing a function f , and this measure is not really model
dependent.

2.2 A non-uniform model: Circuits

A different kind of model is the model of circuits. A circuit computing a function h : {0, 1}n → {0, 1}
is a directed acyclic graph with the following properties. Every vertex (also called gate) has fan-in
either 0 or 2. If the fan in is 0, then the vertex is labeled with an input variable xi. If the fan-in is
2, then the vertex is labeled with a function that maps 2 bits to 1 bit. There is a designated output
gate. The circuit is evaluated by evaluating each gate in turn until the output gate is evaluated.

There are two major quantities we can measure to capture the complexity of a circuit:

• Size. We can measure the number of gates in the circuit.

• Depth. We can measure the length of the longest input to output path. The depth complexity
is a measure of how much parallel time it takes to compute the function.

As with Turing Machines, observe that small changes to the model do not really affect these
complexity classes. For example, one can change the fan-in of the gates to 10, and this will affect
the size of the smallest circuit computing a function only by a constant factor.

Given a function f : {0, 1}∗ → {0, 1}, we say that the function has a size s(n) circuit family if
for every n, there is a circuit of size s(n) that computes the function correctly on inputs of length
n. Similarly, we can talk about the depth complexity of computing a function.

Theorem 3. Every function h : {0, 1}n → {0, 1} can be computed in size O(2n/n) and depth O(n).

We shall prove the bound of O(2n). The idea is to use recursion. Let h0 denote the function
on n− 1 bits given by h0(x) = h(x, 0), and h1 = h(x, 1). Then by induction we can compute h0, h1
recursively, and combine them using the value of the last bit to obtain h.

Thus, if Sn is the size of the resulting circuit when the underlying function takes an n bit input,
we have proved that

Sn ≤ 2Sn−1 + c,

1 Turing Machines and Circuits-3

where c is a constant that is independent of n and the function f . Expanding this recurrence, and
using the fact that S1 ≤ c, we get that

Sn ≤
n∑

i=1

2ic = c.(2n+1 − 1) ≤ 2c · 2n,

where here we used the formula for computing the sum of a geometric series.

1 Turing Machines and Circuits-4

