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Last time, we claimed the existence of a universal turing machine:

Theorem 1. There is a turing machine M such that given the code of any Turing machine α and
an input x as input to M , if α takes T ≥ 1 steps to compute an output for x, then M computes
the same output in O(CT ) steps, where here C is a number that depends only on α and not on x.

A similar theorem holds for space bounded computation:

Theorem 2. There is a turing machine M such that given the code of any Turing machine α and
an input x as input to M , if α takes S ≥ log |x| space to compute an output for x, then M computes
the same output in O(CS) space, where here C is a number that depends only on α and not on x.

However, proving the space bounded version requires some care. We need the concept of a
configuration graph of a turing machine. A configuration of a Turing Machine is the contents of
all of its tapes, head locations and current state (or line of code). Given a fixed input x to the
machine M , the configuration graph GM,x is the directed graph whose vertices are configurations
of the machine during its execution, and there is an edge (u, v) if and only if the configuration u
changes to v after one step.

Then we have the following by counting all possible configurations:

Lemma 3. If a turing machine uses space s(n) ≥ log n, the number of configurations on input x
is at most c = 2O(s(|x|)).

Observe that if the Turing Machine is going to halt, it must halt in c steps, since after so many
steps it will repeat a configuration (by the pigeonhole principle). and so enter an infinite loop.
Thus the simulation needs to simulate the Turing machine for c steps. All of this can be done in
space O(s(|x|)).

1 Diagonalization

Our main weapon to show that Turing Machines have trouble computing things is the technique
of diagonalization. This is a technique that has its roots in classical mathematics. Let us use it to
prove a classical theorem:

Theorem 4. There is no way to list every real number in the interval [0, 1].

Proof Suppose not, and consider any enumeration of these real numbers. Let x be the real
number of the form 0 . . . , where the i’th digit of x is not equal to the i’th digit of the i’th real
number in the enumeration.

Then x cannot appear in the list of real numbers, for if it did occur in position j, its j’th digit
would disagree with x’s j’th digit.

A very similar idea gives an impossibility result for Turing Machines. We shall need some
notation. Given a string α, we write Mα to denote the Turing Machine whose code is is α.
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Theorem 5. There is a function that is not computed by any Turing Machine.

Before we see the the simple proof, let us point out that this is philosophically a very powerful
fact. A consequence of it is that assuming the Church-Turing Thesis is true, there are some ways to
manipulate information that can never occur in the universe. It seems hard to imagine a physical
process that violates the Church-Turing thesis, and it also seems hard to stomach the fact that
the universe cannot manipulate information in a particular way, yet one of those two (admittedly
wishy washy) strange things must happen.
Proof

Consider the function f : {0, 1}∗ → {0, 1} defined as follows:

f(α) =

{
1 if Mα(α) = 0

0 else.

No Turing Machine can compute this function, for if there was some machine that could, then
let γ denote the binary encoding of its code. Then we have that Mγ(γ) = f(γ), but this contradicts
the definition of f .

You may object that the uncomputable f that we found above is very unnatural, but actually
it is not hard to come up with natural examples that are also impossible to compute using Turing
Machines.

For example, we can define the function HALT : {0, 1}∗ → {0, 1} that takes as input two strings
α, x, and then decides whether Mα(x) halts or runs forever. This seems like a very useful function
to compute, but it is also uncomputable.

Theorem 6. HALT is not computable by a Turing Machine.

Proof Suppose it was. Then consider the machine M that on input α first simulates HALT(α, α).
If the answer is that Mα(α) halts, then M simulates Mα(α) and outputs the opposite of its output.
If Mα(α) does not halt, then M outputs 0. Then M computes the uncomputable function f above.

2 Hierarchy Theorems

In this section, we shall show that Turing Machines are strictly more powerful when given more
resources.

Let us start by formalizing the notion of the class of functions computable in a certain time.

Definition 7. We say that a function f : {0, 1}∗ → {0, 1} is in DTIME(t(n)) if there is a Turing
Machine computing f that halts in time O(t(n)).

Question: Does giving a Turing Machine more time actually allow it to compute things that
it cannot compute without the extra time?

We are going to use diagonalization to show that Turing Machines that have more resources
can compute things that are not computable by Turing Machines with fewer resources. The basic
idea is that a Turing Machine with more resources can simulate every machine that requires fewer
resources and do the opposite of what it does on some input.

However, we shall need a few concepts to formalize this.

2 Hierarchy Theorems-2



Definition 8 (Time Constructible Functions). We say that the map t : N→ N is time constructible
if t(n) ≥ n and on input x there is a Turing Machine that computes t(|x|) in time O(t(|x|)).

Definition 9 (Space Constructible Functions). We say that the map s : N→ N is time constructible
if s(n) ≥ log n and on input x there is a Turing Machine that computes s(|x|) in space O(s(|x|)).

To simplify the proof, we shall restrict the way Turing Machines are encoded into binary strings.
We shall assume that our encoding satisfies the properties that:

• Every machine is encoded by an infinite number of different binary strings. This can be
achieved, for example, by adding irrelevant bits of code (like comments) to our programming
language

• Every binary string encodes some Turing Machine.

Given an encoding satisfying these assumptions, we are ready to prove the hierarchs theorem:

Theorem 10 (Time Hierarchy). If r, t are time-constructible functions satisfying r(n) log r(n) =
o(t(n)), then DTIME(r(n)) ( DTIME(t(n)).

In order to avoid distracting details, we shall prove the easier case when r(n) log r(n) = o(t(n)).
Proof Let `(n) be the function r(n) log(r(n)). Then consider the machine M that on input x,
simulates the computation of Mx(x). We shall ensure that M runs for `(|x|) steps (if it runs for
longer, M will terminate itself). If the simulation terminates with output 0, M outputs 1, else it
outputs 0. By Theorem 1, this simulation takes O(`(|x|)) steps.

Note that M computes a function f : {0, 1}∗ → {0, 1} such that

f ∈ DTIME(`(n)) ⊆ DTIME(r(n) log(r(n))) ⊆ DTIME(t(n)).

On the other hand, if α is the code of a machine that computes a function in DTIME(r(n)),
then if n is large enough, α is guaranteed to halt in c.r(n) steps for some constant c. Since the same
machine is represented by an infinite number of strings, there is some long enough representation
α′ such that `(|α′|) > cr(|α′|), then the simulation of Mα′ must compute the opposite, so we must
have that Mα′(α′) 6= f(α′).

For the general case, we just need to pick a function `(n) that grows faster than O(r(n)), but
slower than t(n). The rest of the proof is the same. Similarly, by appealing to the simulation
promised by Theorem 2, we can prove a space hierarchy theorem:

Theorem 11 (Space Hierarchy). If q, s are space-constructible functions satisfying q(n) = o(s(n)),
then DSPACE(q(n)) ( DSPACE(s(n)).

We leave out the details.

3 Gődel’s Incompleteness Theorem

We would be remiss not to mention one of the most important results in mathematics at this point,
namely Gődel’s incompleteness theorem. The theorem concerns the problem of trying to find an
axiomatic basis for mathematics. Ideally one would like to find a constant set of axioms that
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define the base truth in mathematics, in such a way that every true statement is provable using
the axioms. Informally, Gődel showed that this project is doomed to failure.

For example, given a set of axioms about the integers like

a(b+ c) = ab+ ac

a+ b = b+ a

We would like to be able to prove every true statement about the integers. For example the
equation (a+ b)2 = a2 + 2ab+ b2 can be derived using the above axioms.

We say that such a set of axioms is consistent if the axioms do not contradict themselves. We
say that the axioms are complete if every equation that is true can be proven to be true using the
axioms.

He proved that:

Theorem 12 (Incompleteness Theorem (informal statement)). For every set of axioms about the
integers, either the axioms are inconsistent, or they are incomplete.
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