
CSE531: Computational Complexity Theory January 11, 2012

Lecture 3 Hierarchies for Circuits, and NP

Lecturer: Anup Rao

1 Counting based Lowerbounds for Circuits

We define the class SIZE(s(n)) to be the set of functions f : {0, 1}n → {0, 1} that can be computed
by a circuit family of size s(n).

Last time we discussed the following theorem:

Theorem 1. Every function f : {0, 1}∗ → {0, 1} is in SIZE(O(2n/n)).

This time we shall prove that the theorem is close to being tight:

Theorem 2. For every large enough n, there is a function f : {0, 1}n → {0, 1} that cannot be
computed by a circuit of size 2n/3n.

Proof To specify a circuit of size s, we need to describe the function that is computed at each
gate (which takes 4 bits) and specify where each of its inputs come from (which takes 2 log s) bits.
Thus, in total it takes 2s log s + 4s bits to define the entire circuit.

Thus the total number of circuits of size s, for s large enough is at most 23s log s. Thus the

total number of circuits of size 2n/n is less than 23·
2n

3n
·n = 22

n
. On the other hand, the number

of functions f : {0, 1}n → {0, 1} is exactly 22
n
, thus not all these functions can be computed by a

circuit of size 2n/(3n).

We can use this theorem to prove a hierarchy bound for space.

Theorem 3. There is a constant c such that for every functions s(n), s′(n) satisfying 2n/n >
s′(n) > cs(n) > n, we have that SIZE(s(n)) (SIZE(s′(n)).

Proof Suppose every function on n bits can be computed using a circuit of size k2n/n. Let ` be
such that k2`/` = s′(n). Then every function on ` bits can be computed by a circuit of size s′(n).
On the other hand, there is some function on ` bits that cannot be computed using a circuit of size
2`/3`. Thus, as long as s′(n) > 3ks(n), no circuit of size s(n) can compute everything computed
by a circuit of size s′(n).

2 Some interesting complexity classes

In order to give a definition that captures the notion of efficient computation, there are two
important considerations. First, efficient computation must allow at least linear (i.e. n) time
just to read the input. Secondly, if an efficient computation makes a call to a subroutine that is
also efficient, then we would want to consider the composed computation to also be efficient. The
smallest computational class that allows both of these is:

3 Hierarchies for Circuits, and NP-1

Definition 4. P =
⋃

c≥1DTIME(nc)

Of course there is a whole spectrum of classes above P . For example:

Definition 5. EXP =
⋃

c≥1DTIME(2n
c
).

3 NP

Definition 6. (Class NP) f : {0, 1}∗ → {0, 1} is in NP if there exists a polynomial p and a
polynomial time machine M such that for every x ∈ {0, 1}∗,

f(x) = 1⇔ ∃w ∈ {0, 1}p(|x|),M(x,w) = 1

M is usually called the verifier and w is usually called the witness or certificate.
Examples:

• Independent set: (G, k) does the graph have an independent set of size k?

• Subset sum: Given a list of numbers A1, . . . , A`, T , is there some subset of the numbers that
sums to T?

• Composite numbers: Given a number N decide if it is composite or not.

4 Reductions

Definition 7. A function f is polynomial time reducible to a function g if there is a polynomial
time computable function h such that f(x) = g(h(x)). We write f ≤P g.

Note that the above definition is not the only one that makes sense. In general it makes sense
to allow our reductions to make multiple calls to the problem being reduced to. However, we will
be able to prove many of our results using the stronger notion above, so that is what we shall use.

Definition 8. We say f is NP-hard if g ≤P f for every g ∈ NP. We say f is NP-complete if f
is NP-hard and f ∈ NP.

Theorem 9. • If f ≤P g and g ≤P h, then f ≤P h.

• If f is NP-hard and f ∈ P, then P = NP .

• If f is NP-complete, then P = NP if and only if f ∈ P .

5 NP-complete problems

Of course, the above definitions only make sense because we do know of examples of NP-complete
problems.

Definition 10. CKT− SAT : {0, 1}∗ → {0, 1} is the function that views its input as a circuit C
and outputs 1 iff ∃x such that C(x) = 1.

3 Hierarchies for Circuits, and NP-2

Theorem 11. CKT− SAT is NP-complete.

Proof Suppose g ∈ NP, and let M be a verifier for g. Then the reduction will build the circuit
Cx that computes M(x,w), where here w are the input variables and x is the input. Since g(x) = 1
if and only if there exists w such that Cx(w) = 1, we can determine the value of g by computing
CKT− SAT(Cx).

3 Hierarchies for Circuits, and NP-3

