
CSE531: Computational Complexity Theory January 18, 2012

Lecture 4 More on NP and the Limits of Diagonalization

Lecturer: Anup Rao

1 Boolean Formulas

A boolean formula is an expression of the form

(x1 ∧ ¬x2) ∨ (x7 ∧ ¬(x6 ∨ ¬x2)).

Formally: it is a circuit where the only allowed gates are ∨,∧,¬, and every gate has fan-out at
most 1. Input gates are allowed to repeat. As usual, size of the gates is number of gates, and the
fan-in is allowed to be at most 2. The formula is said to be in conjunctive normal form (CNF) if it
is an AND of OR’s. Similarly, it is said to be in disjunctive normal form if it is an OR of ANDS.
For example

(x1 ∨ ¬x2) ∧ (¬x7 ∨ x9 ∨ ¬x1)
is a CNF.

We have the following lemma:

Lemma 1. Every function f : {0, 1}` → {0, 1} can be computed by a CNF (resp. DNF) of size `2`.

Proof For each input z such that f(z) = 0, we add the literal xi to the clause if zi = 0 and ¬zi
otherwise. So for example, if f(0, 1, 0) = 0, we add the clause (x1 ∨¬x2 ∨x3). Then note that each
clause is 0 on exactly one input, and all inputs that make f 0 make some clause 0. The resulting
formula is of size `2`. The case of DNF’s is symmetric.

We define SAT : {0, 1}∗ → {0, 1} to be the function that takes as input a boolean formula F ,
and outputs 1 if and only if there is a an x such that F (x) = 1.

Theorem 2. SAT is NP-complete.

Proof SAT ∈ NP is easy enough to check. The witness is a satisfying assignment to the formula.
Since we have already shown that CKT− SAT is NP-hard, it will be enough to show that

CKT− SAT ≤P SAT.
Given a circuit, we shall output a CNF formula that is satisfiable if and only if the circuit

accepts some input. Introduce a new variable yg for each internal gate g of the circuit. If the
internal gate g has inputs h, q, let Fg be the CNF formula on variables yg, yh, yq that is 1 if and
only if yg = g(yq, yh). By Lemma 1, this formula is of constant size. If the output gate is v, the
final formula is

yv ∧
∧
g

Fg,

which is satisfied if and only if the circuit has a satisfying assignment.

A 3-CNF formula is a CNF where every clause has at most 3 variables. For example: (x1 ∨
¬x2 ∨ x3) ∧ (x3 ∨ x4 ∨ ¬x1) ∧ · · · .

3SAT : {0, 1}∗ → {0, 1} is the function that takes as input 3-CNF and outputs 1 if and only if
the formula is satisfiable. Next we show that even this function is NP-complete

4 More on NP and the Limits of Diagonalization-1

Theorem 3. 3SAT is NP-complete.

Proof Clearly, 3SAT ∈ NP .
Any clause (a ∨ b ∨ c ∨ d) can be replaced with (a ∨ b ∨ z) ∧ (a ∨ b ∨ ¬z), and the clause is

satisfiable if and only the resulting two clauses are satisfiable. In this way, we can convert any CNF
formula into a 3-CNF, such that the final formula is satisfiable if and only if the original formula
is satisfiable.

Remark 4. Is the same true for 2SAT? We do not know. There are polynomial time algorithms
for 2SAT, so if you found a reduction to 2SAT, you would prove P = NP.

There are many natural NP-complete problems. For example:

• Independent set. Given a graph G and a number k, compute whether or not the graph has
an independent set of size k.

To show that this problem is NP-hard, we can reduce from 3SAT. Replace each 3SAT
clause with a triangle of vertices, one for each literal, all connected. Connect literals across
triangles if and only if they contradict each other. If the formula is satisfiable, then there is
an independent set of size equal to the number of triangles, since each clause must contain a
satisfied literal, which gives a vertex from each triangle. Conversely, if there is an independent
set of size m, then consider the assignment that satisfies each literal of the set. This is
assignment is well defined by the construction of the graph, and it must satisfy the formula.

• Hamiltonian path. Given a directed graph G, is there a path that visits every vertex exactly
once?

2 Nondeterministic Machines

The original definition of NP was by considering Turing machines that are allowed to make non-
deterministic choices: namely after each step, the machine is allowed to make a guess about which
state to transition to in the next step. The machine computes 1 if there is a single accepting
computational path, and 0 otherwise.

We can define NTIME(t(n) in the same way as DTIME(t(n)), it is the set of functions computable
by non-deterministic machines in time O(t(n)), and then you can check that NP =

⋃
cNTIME(nc).

Just as for deterministic time, there is a non-deterministic time hierarchy theorem:

Theorem 5. If r, t are time-constructible functions satisfying r(n+ 1) = o(t(n)), then

NTIME(r(n)) (NTIME(t(n)).

3 The problem with diagonalization as a technique for separating
P and NP.

Definition 6 (Oracle Machines). Given a function O : {0, 1}∗ → {0, 1}, an oracle-machine is a
Turing Machine that is allowed to use a special oracle tape to make queries to O. Each query takes
unit time.

4 More on NP and the Limits of Diagonalization-2

We can define PO, NPO as functions computable in poly time (resp nondeterministic poly
time) with oracle access to O.

Then we have the following theorem:

Theorem 7. There exists an oracle A such that PA = NPA, and an oracle B such that PB 6=
NPB.

The theorem gives a hint about one of the ways in which it will be hard to determine whether
or not P = NP. Any such proof must not work in the relativized worlds where access to A,B is
permitted. Proof Let A be the function that on input α, x outputs 1 if and only if Mα(x) outputs
1 in 2|x| steps. Then PA = EXP, since every exponential time computation can be simulated with
access to A, and every query to A can be simulated in exponential time. Also NPA = EXP, since
in exponential time we can simulate all queries to A and simulate all nondeterministic choices.

The second part is more interesting. We shall define an oracle B : {0, 1}∗ → {0, 1} and a
function f ∈ NPB such that f /∈ PB. Once we have defined B, we define f as follows:

f(x) =

{
1 if there exists y such that |y| = |x| and B(y) = 1,

0 else.

f ∈ NPB, since a machine can guess the y of the same length as x, and make a single query to
verify that B(y) = 1.

To define B, we shall use diagonalization. Our goal is to make sure that the i′th machine fails
to compute the correct value of f(x) in time 2n/10, for some n. To do this we define the value of B
gradually.

We define the value of B in phases. After each phase, we shall have defined the value of B on
a finite set of strings. In Phase i, let t be so large that the value of B is not yet defined on each
string of length t. Then run the i’th machine Mi(1

t) for 2t/10 steps. Each time Mi queries a string
of B whose value has not yet been defined, return 0 (and define the value of B on that string to be
0. If Mi halts with value 1, then set B to be 0 on all strings of length t. If Mi halts with value 0,
then pick a string y of length t that Mi did not query (if such a string exists), and set its value to
B(y) = 1.

Set the value of B on strings that are not defined by the above process to be 0.
Suppose for the sake of contradiction that f ∈ PB. Then consider the machine M that computes

f . Since each machine is represented an infinite number of times, and M runs in polynomial time,
there must be some i for which the number t is so large that 2t/10 exceeds the running time of M
on inputs of length t. Then in phase i, M cannot possibly query all input strings of length t, and
so M will compute the wrong value for f .

4 NP versus the set of NP-complete problems

Theorem 8. If P 6= NP, there is a function f ∈ NP−P that is not NP-complete.

4 More on NP and the Limits of Diagonalization-3

