
CSE531: Computational Complexity Theory January 24, 2012

Lecture 5 Space

Lecturer: Anup Rao

1 L

The smallest space class that makes sense is L = DSPACE(log n). As usual the non-deterministic
version of this class is when the machine can make non-deterministic choices, and is called NL =
NSPACE(log n). There is a subtle issue about the definition of NL: if we allow the machine to
remember the non-deterministic choices that it made for free (for example by giving it access to a
guess tape that it can read from), then the power of the class changes significantly. This issue will
be addressed in your homework.

Another interesting class is PSPACE =
⋃

cDSPACE(nc). The corresponding non-deterministic
class is actually equal to PSPACE, as we shall prove below.

A very useful trick to remember when composing space bounded computations is the following:
If it takes space s1(n) to compute f and space s2(n) to compute g, then one might be able to
compute the composition f(g(x)) in space s1(n) + s2(n). The idea is that in the computation of
f , every time we need to lookup an output symbol of g(x), we can recompute it. Thus, as long as
s1(n), s2(n) are enough to store pointers into the output locations, we actually only need to sum
the spaces to compute the composition.

Unlike the case of time bounded computations, in the space bounded world we actually have
non-trivial results bounding the power of non-determinism. The main result is Savitch’s theorem:

Theorem 1 (Savitch). For any space-constructible s : N→ N,

NSPACE(s(n)) ⊆ DSPACE(s(n)2).

Proof Given any f ∈ NSPACE(s(n)), and an input x, we can construct its configuration graph.
Then f(x) = 1 if and only if this graph has a path from the start configuration to the accept
configuration. We can assume that there is a single accept configuration by requiring that the
machine erase its work tape before outputting 1. Indeed, this graph can be computed in space
s(n), since s(n) ≥ log n.

Thus to complete the proof, it is enough to show that checking whether two vertices are con-
nected in a directed graph of size 2s(n) requires space s(n)2.

We shall give a recursive algorithm that can compute the values A(u, v, i) as defined below:
Define

A(u, v, i) =

{
1 if there is a path from u to v of length 2i,

0 else.

Note that A(u, v, i) = 1 if and only if ∃z such that A(u, z, i − 1) = 1 and A(z, v, i − 1) = 1.
Thus, we can compute:

A(u, v, i)

5 Space-1

• For all z, recursively compute A(u, z, i−1) and A(z, v, i−1), and output 1 if both computations
result in 1.

• Otherwise output 0.

If the size of the graph is 2s, there are s + 1 recursive calls, where A(u, v, 0) can be computed
trivially by looking up the corresponding bit in the input. In each recursive call, the algorithm
needs to store only the vertices u, v, z, which takes O(s) space. Thus the total space used is O(s2).

Corollary 2. NL ⊆ L2 = DSPACE(log2 n).

Corollary 3. PSPACE = NPSPACE.

The above theorem shows that the problem of connectivity is NL-complete. In recent times,
progress have been made on showing that undirected connectivity (connectivity in undireted graphs)
can be computed in log space:

Theorem 4 (Reingold). Given an undirected graph of size n, there is an algorithm in DSPACE(log n)
that can compute whether or not any two vertices are connected.

Given any set of boolean functions S, we write coS to denote the set {f : 1 − f ∈ S}. Thus
coNP is the set of functions for which there is an efficiently verifiable proof that f(x) = 0.

Theorem 5. For space constructible s(n), NSPACE(s(n)) = coNSPACE(s(n)).

Proof As usual we focus on the configuration graph. To prove the theorem, it will be enough
to be able to verify that there is no path from two vertices u, v in the graph, in s(n) space. This
would show that if f(x) = 1 can be certified in space s(n), then f(x) = 0 can also be certified in
space s(n). The other direction is completely symmetric.

We shall prove how to do this by designing a sequence of algorithms. Let Ci denote the set of
vertices that are reachable from u in i steps. Suppose the graph is of size at most 2s.

Claim 6. Given any vertex v and a number i ≤ 2s, there is a non-deterministic algorithm that can
verify that v ∈ Ci using space O(s).

The algorithm simply guesses a path from u to v and checks that the path is a valid path of
the graph by checking each edge in order.

Claim 7. Given the size of |Ci−1| = c, and a vertex v, there is a non-deterministic algorithm that
can verify that v /∈ Ci using space O(s).

Since the algorithm is given the size of Ci−1i, the algorithm guesses each of the vertices of Ci−1
in increasing order, and for each one, it checks that the vertex is different from the last vertex that
was guessed, and then uses Claim 6 to verify that the vertex is indeed a member of Ci−1. It also
makes sure that the given vertex is not v and not a neighbor of v. It maintains a count of all the
number of vertices guessed and checks that |Ci−1| vertices are given.

Finally, we argue that given the size of Ci−1, we can certify the size of c.

Claim 8. Given the size of |Ci−1| = c′, there is a non-deterministic algorithm that can certify that
|Ci| = c using space O(s).

5 Space-2

For each vertex v of the graph (in increasing order), the algorithm uses Claims 6 and 7 to check
whether v ∈ Ci or v /∈ Ci, and it maintains a count of the number of vertices in Ci.

Thus, we obtain an algorithm that can verify that v /∈ Cn in O(log n) space.

5 Space-3

