
CSE531: Computational Complexity Theory January 24, 2012

Lecture 6 PSPACE

Lecturer: Anup Rao

1 A complete Problem for PSPACE

The TQBF function maps the set of totally quantified boolean formulas to 0 or 1. A totally
quantified boolean formula is something that looks like this:

ψ = ∃x1∀x2∃x3 · · · ∃xnφ(x1, . . . , xn),

where here φ is a boolean formula on the variables x1, . . . , xn. TQBF(ψ) = 1 if and only ψ is true.

Theorem 1. For every boolean f ∈ PSPACE, there is a polynomial time computable function g
mapping bits to truly quantified boolean formulas such that f(x) = TQBF(g(x)).

Proof We shall show how to use the formula to encode connectivity in the configuration graph
of the machine that computes f . This is a graph of size 2t = 2poly(n).

We generate a formula ψi(A,B) in poly(n) time that checks whether there is a path of length
≤ 2i from A to B. When i = 0. ψi(A,B) just needs to check that B is the configuration that comes
after A. Since we know that there is a polynomial sized circuit C such that C(x,A) computes the
configuration that follows from A, we can construct a circuit F of size poly(n) such that

F(A,B, x) =

{
1 if C(A, x) = B,

0 else.

Just like in the proof that SAT is NP-complete, we can generate a polynomial sized formula
F (y) such that ∃yF (y) is true if and only if F(A,B, x) = 1.

For the general case, note that there is a path of length at most 2i from A to B if and only if
there is some vertex C in the graph such that there is a path of length 2i−1 from A to C and a
path of length 2i−1 from C to A. Thus we can define

ψi(A,B) = ∃C,ψi−1(A,C) ∧ ψi−1(C,B).

However, this doubles the size of the formula ψi−1 (which means that after t steps we will be
trying to generate a formula that is exponentially big and this is impossible in polynomial time).

Indeed, we haven’t yet used the ∀ quantifiers. Let us use the same idea as before to define the
smaller formula:

ψi(A,B) = ∃C,∀X,∀Y, (X = A ∧ Y = C) ∨ (X = C ∧ Y = B)⇒ ψi−1(X,Y)

= ∃C,∀X,∀Y, (¬(X = A ∧ Y = C) ∧ ¬((X = C ∧ Y = B)) ∨ ψi−1(X,Y)

The end result is a formula of size poly(n, t) that checks for a path of length 2t in the graph as
required.

6 PSPACE-1

2 SAT has no linear time, logspace algorithm

Although we cannot say anything non-trivial about the running time required to compute SAT, or
the space required to compute SAT, we can show that SAT cannot have an algorithm that is both
linear time and log space:

Theorem 2. There is no turing machine computing SAT in O(n) time and O(log n) space.

In order to prove the theorem, we shall rely on two facts that we have convinced ourselves of
before:

Theorem 3. Any f ∈ NTIME(t(n)) can be reduced in in logarithmic space to computing SAT on a
formula of size O(t(n) log t(n)).

Earlier in the course we proved that the reduction is in polynomial time, but in fact it is even
in L. (Think about this!).

Theorem 4. If t(n), r(n) are time constructible functions such that t(n + 1) = o(r(n)), then
NTIME(t(n)) (NTIME(r(n)).

Proof of Theorem 2: The idea is to use the purported SAT algorithm to get an unreasonable
speed up of non-deterministic computations. Suppose for the sake of contradiction that SAT can
be computed in linear time and logarithmic space.

Suppose f ∈ NTIME(n2) via the non-deterministic machine Mf . We shall show how to compute
f significantly faster.

By appealing to Theorem 3, consider the machine M that runs as follows on input x ∈ {0, 1}n:

1. Generate the formula φ of size n2 log n that simulates the machine Mf (x).

2. Check whetherMf (x) accepts by computing SAT(φ) in timeO(n2 log n) and spaceO(log(n2 log n)) =
O(log n).

M is not our final simulation. M computes f in time O(n2 log n) and space O(log n).
Consider the configuration graph of M . This graph accepts if and only if there is an accepting

path of length t = n2 log n, which happens if and only if there exist
√
t intermediate configurations

C1, . . . , C√t, such that there is a path of length
√
t between intermediate configurations. In other

words, M accepts if and only if

∃C1, . . . , C√t, ∀i, Ci follows from Ci−1 in
√
t steps.

Each configuration takes only O(log n) bits to write down. So once we guess all of these
√
t

configurations, the problem of determining whether they determine an accepting of path of length
t can be encoded using a SAT formula of size O(

√
t · log n · polylog(t, n)) (by Theorem 3), so it

can be solved in deterministic time O(
√
t · polylog(t, n)) . Thus, overall, we get a simulation in

non-deterministic time O(
√
t · polylog(t, n)) = O(npolylog(n)), contradicting the non-deterministic

time hierarchy theorem1 (Theorem 4) .

1Actually, we can apply the algorithm for SAT again to remove the non-determinism completely...

6 PSPACE-2

