
CSE531: Computational Complexity Theory February 1, 2012

Lecture 7 Randomized Computations

Lecturer: Anup Rao

1 Randomized Computation

We have considered what happens to the power of Turing Machines when we allow them to make
non-deterministic choices. A more realistic way to (potentially) give Turing Machines additional
power is to allow them to make random choices. A randomized turing machine is a machine that
in each step is allowed to toss a coin in order to make a decision about which transition to make.

We say that the randomized machine computes the function f if for every input x, Prr[M(x, r) =
f(x)] ≥ 2/3, where the probability is taken over the random coin tosses of the machine M .

We define the class BPP, which is the set of functions that are computable by polynomial time
randomized turing machines. We shall say that f ∈ RP if there is a randomized machine that
always compute the correct value when f(x) = 0, and computes the correct value with probability
at least 2/3 when f(x) = 1. Finally, we define the class ZPP to be the set of boolean functions
that have an algorithm that never makes an error, but whose expected running time is polynomial
in n.

The choice of the constant 2/3 in these definitions is not crucial, as the following theorem shows:

Theorem 1 (Error Reduction in BPP). Suppose there is a randomized polynomial time machine
M , a function f and a constant c such that Prr[M(x, r) = f(x)] ≥ 1/2 + n−c. There for every
constant d, there is a randomized polynomial time machine M ′ such that Prr[M

′(x, r) = f(x)] ≥
1− 2−n

d
.

In order to prove the theorem, we shall need to appeal to the Chernoff-Hoeffding Bound:

Theorem 2. Let X1, . . . , Xn be independent random variables such that each Xi is a bit that is
equal to 1 with probability ≤ p. Then Pr[

∑n
i=1Xi ≥ pn(1 + ε)] ≤ 2−ε

2np/4.

Proof of Theorem 1: On input x, the algorithm M ′ will run M repeatedly nk times for some
constant k (that we shall fix soon), and then output the majority of the answers. Let Xi the binary
random variable that takes the value 1 only if the output of the i’th run is incorrect.

We have that X1, . . . , Xnk are independent random variables, and each is equal to 1 with
probability at most 1/2− n−c. Thus,

Pr[
∑
i

Xi > nk/2] = Pr[
∑
i

Xi > nk(1/2− n−c)(1/2)/(1/2− nc)]

≤ Pr[
∑
i

Xi > nk(1/2− n−c)(1 + 2n−c)]

< 2−O(n−2c)nk/8

Set k to be large enough so that this probability is less than 2−n
d
.

By brute force search, we can easily prove:

7 Randomized Computations-1



Theorem 3. BPP ⊆ EXP.

Since RP is the same as the set of functions for which a random witness is a good witness,

Theorem 4. RP ⊆ NP.

We also have:

Theorem 5. ZPP = RP ∩ coRP.

Proof Suppose f ∈ ZPP, via a randomized algorithm M whose expected running time is t(n).
Consider the algorithm that simulates M for 10t(n) steps, and outputs 0 if the simulation halts.
Then clearly, the algorithm only makes an error if the correct answer is 1. On the other hand, the
probability that running time of M exceeds 10t(n) is at most 1/10 (or else the expected running
time would exceed t(n). Thus we obtain an RP algorithm. The same idea (reversing the roles of
0 and 1) gives a coRP algorithm.

For the other direction, suppose f has an RP algorithm M1 and a coRP algorithm M0. Then
on input x consider the algorithm that alternatively runs M0(x),M1(x),M0(x), . . . until either
M1(x) outputs 1, or M0(x) outputs 0. If M1(x) = 1, then it must be that f(x) = 1. Similarly if
M0(x) = 0, it must be that f(x) = 0. In any case, one of these two algorithms will verify the value
of x in an expected constant number of runs.

Theorem 6. BPP ∈ P/poly.

The above theorem again easily following from the Chernoff-Hoeffding bound. We can first
amplify the error probability so that the probability of error is less than 2−n. Then by the union
bound, for each input length, there must be some fixed string r such that M(x, r) = f(x) for each
of the 2n choices of x. Then we can use a circuit to hardcode this r and compute f in polynomial
size.

We do not know whether BPP = P and this is a major open question (one that I am personally
very interested in). However, there have been some interesting conditional results. For example,
work of Impagliazzo, Nisan and Wigderson has led to the following theorem:

Theorem 7. If there is some function f ∈ EXP such that for every constant ε > 0, f cannot be
computed by a circuit family of size 2εn, then BPP = P.

The theorem is interesting because the assumptions don’t seem to say anything about useful.
The assumption is that there is a function that can be computed by exponential time turing
machines but cannot be computed by subexponential sized circuits. This fact is cleverly leveraged
to derandomize any randomized computation. The proof of this theorem is outside the scope of
this course.

2 Polynomial Identity Testing

One can ask whether there are interesting problems that are known to be in BPP but not known
to be in P. Although there are many examples of problems for which the fastest algorithms are
randomized (for example, primality testing), there are not so many examples for which the only
known algorithm is randomized. A key such example is the problem of polynomial identity testing.

7 Randomized Computations-2



We are given an arithmetic circuit (namely a circuit that uses multiplication and addition gates).
The goal is to determine whether the polynomial computed by the circuit is identically 0. There is
a subtle issue here that needs to be clarified. Note that two different polynomials may compute the
same function on a particular set of inputs. For example, if the inputs are all binary, then x2i = xi
for any variable xi. Indeed, if we changed the problem above to ask whether or not the arithmetic
circuit computes the 0 function on binary inputs, then we obtain an NP-complete problem.

There is a simple randomized algorithm for identity testing. We pick random integers from
a large enough set and evaluate the circuit on those inputs. If the circuit computes a non-zero
polynomial, it can be shown that the output will be non-zero with high probability. To actually
make this work, we need to make sure that evaluating the circuit can be done efficiently. Indeed
the evaluation can easily compute a number that is as big as 22

s
with a circuit of size s, which is

too big to manipulate. It turns out that one can just do all the evaluations modulo a large random
prime number p and obtain the same guarantees.

We do not know how to get a deterministic algorithm for this problem.

3 Randomness vs non-determinism

Theorem 8. BPP ⊆ NPSAT.

Proof Suppose f ∈ BPP. Let us first reduce the error of the probabilistic algorithm for f to
2−n. Suppose the algorithm uses m random bits. Thus, we just need to be able to distinguish the
case when M(x, r) accepts 1− 2−n fraction of all m bit strings from the case when it accepts only
2−n fraction of all m bit strings. Distinguishing the fractions 1 from 0 would be easy (just try a
single string). Distinguishing the fractions 1 from < 1 can be done with a query to SAT. So we
shall reduce to this case.

Let u1, . . . , uk{0, 1}m be k random m bit strings, where k will be chosen to be much smaller
than 2n. Then we have the following claims, where here r ⊕ ui denotes the bitwise parity of the
m-bit string r with the m-bit string ui.

Claim 9. If f(x) = 1, for every choice of u1, . . . , uk, there exists some r ∈ {0, 1}m such that∧
iM(x, r ⊕ ui) = 1.

The claim following from the union bound. If you pick a random r, the probability that
M(x, r⊕ui) is incorrect is at most 2−n. Thus the probability that any of them is wrong is at most
k2−n < 1.

In the other case, we have:

Claim 10. If f(x) = 0, there exist choices u1, . . . , uk, such that for every r ∈ {0, 1}m,
∨
iM(x, r⊕

ui) = 0.

For any fixed r, the probability that all choices of ui fail to give the correct answer is at most
2−nk. Thus, as long as nk > m, by the union bound some choice of ui will work for all choices of r.

Our final algorithm in NPSAT is as follows. We start by guessing u1, . . . , uk (say k = m2)to
satisfy Claim 10. Then we use the SAT oracle to check whether or not there is an r that makes
M(x, r ⊕ ui) accept for some i.

7 Randomized Computations-3


