
CSE531: Computational Complexity Theory February 6, 2012

Lecture 8 Interactive Proofs

Lecturer: Anup Rao

1 Interactive proofs

One way to define NP is via the idea of a proof system. NP is the set of functions f for which
there is a polynomial time verifier algorithm V such that given any x with f(x) = 1, there exists
a prover P that can prove to the verifier that f(x) = 1 by providing a polynomial sized witness w
for which V (x,w) = 1, yet if f(x) = 0, no such prover exists.

What happens if we allow the verifier to have a longer interactive conversation? Presumably,
giving the verifier the ability to adaptively ask the prover questions based on his previous responses
should give the verifier more power, and so allow the verifier to verify the correctness of the value
for a larger set of functions. In fact, this does not give the verifier additional power: for if there is
such an interactive verifier V I for verifying that f(x) = 1, we can design a non-interactive verifier
that does the same job. The new verifier will demand that the prover provide the entire transcript
of interactions between V I and a convincing prover. The new verifier can then verify that the
transcript is correct, and would have convinced V I . Thus, if f has an interactive verifier, then
f ∈ NP.

The story is more interesting if we allow the verifier to be randomized. We say that f ∈ IP if
there is a polynomial time randomized verifier V such that

Completeness For all x, if f(x) = 1, there is an oracle P such that Prr[V
P (x, r) = 1] ≥ 2/3.

Soundness For all x, if f(x) = 0, for every oracle P , Prr[V
P (x, r) = 1] ≤ 1/3.

Since any prover can be simulated in polynomial space, we have:

Theorem 1. IP ⊆ PSPACE.

It is easy to check that allowing the prover to be randomized does not change the model.
We shall eventually prove that IP = PSPACE (and so IP is potentially much more powerful

than NP).

2 Example: Graph non-Isomorphism

Two graphs on n vertices are said to be isomorphic if the vertices of one of the graphs can be
permuted to make the two equal.

Consider the problem of testing whether two graphs are not isomorphic: the boolean function
f such that f(G1, G2) is 1 if and only if G1 is not isomorphic to G2. f ∈ coNP, since the prover
can just send the verifier the permutation that proves that they are isomorphic. We do not know
if f ∈ NP, but it is easy to prove that f ∈ IP.

Here is the simple interactive protocol:

1. The verifier picks a random i ∈ {1, 2}.

8 Interactive Proofs-1

2. The verifier randomly permutes the vertices of Gi and sends the resulting graph to the prover.

3. The prover responds with b ∈ {1, 2}.

4. The verifier accepts if i = b.

If G1, G2 are not isomorphic, then any permutation of Gi determines i, so the prover can
determine i and send it back. However, if G1, G2 are isomorphic, then the graph that the prover
receives has the same distribution whether i = 1 or i = 2, thus the prover can guess the value of
i with probability at most 1/2. Repeating the protocol several times, the verifier can make the
probability of being duped by a lying prover exponentially small.

3 Computing the Permanent in IP

The permanent of an n × n matrix M is defined to be
∑

π

∏n
i=1Mi,π(i), where the sum is taken

over all permutations π : [n]→ [n].
The permanent is important because it is a complete function for the class #P:

Definition 2. A function f : {0, 1}n → N is in #P if there exists a polynomial p and a poly time
machine M such that

f(x) = |{y ∈ {0, 1}p(|x|) : M(x, y) = 1}|

For example, in #P one can count the number of satisfying assignments to a boolean formula,
which is potentially much harder than just determining whether the formula is satisfiable or not.
One can show that any such problem can be reduced in polynomial time to computing the perma-
nent of a matrix with 0/1 entries. On the other hand, the permanent itself can be computed in
#P. Thus the permanent is #P-complete.

3.1 Some Math Background

A finite field is a finite set that behaves just like the real numbers, in that you can add, multiply,
divide and subtract the elements, and the sets include 0, 1. An example of such a field is Fp, the
set {0, 1, 2, . . . , p}, where here p is a prime number. We can perform addition and multiplication
by adding/multiplying the integers and taking their remainder after division by p. This leaves us
back in the set. For any 0 6= a ∈ Fp, one can show that there exists a−1 ∈ Fp such that a · a−1 = 1.
To see this, note that since a is relatively prime to p, Euclid’s gcd algorithm shows that there exist
integers b, d such that ab+ pd = 1, so we can define a−1 = b mod p.

We shall work with polynomials over finite fields. Fp[X] denotes the set of polynomials in the
variable X with coefficients from Fp.

Fact 3. Given any set of d+ 1 distinct points a0, a1, . . . , ad, there is a one to one correspondence
between polynomials of degree at most d, and their evaluations on the points a0, . . . , ad.

Proof Given any set of constraints f(ai) = bi, we can build a degree d polynomial for f as
follows:

f(x) =
d∑
i=0

bi
∏
j 6=i

(x− aj)/(ai − aj)

8 Interactive Proofs-2

Thus, for every such map, we have defined a polynomial that evaluates that map.
Since the dimension of the set of functions f : {a0, . . . , ad} → F is d + 1, which is the same

as the dimension of the space of polynomials of degree d, this relationship must be a one to one
correspondence.

An easy consequence of the above fact is the following:

Fact 4. Any non-zero polynomial f(X) of degree d has at most d roots. (a is a root if f(a) = 0).

Proof Suppose there are d + 1 roots a0, . . . , ad. Then there must be exactly one degree d
polynomial evaluating to 0 on all these roots, and so f must be the 0 polynomial, which is a
contradiction.

The density of primes:

Fact 5. Let t(n) denote the number of primes in the set [n]. Then

lim
n→∞

t(n)

n/ lnn
= 1.

The fact says that a random n-bit number is likely to be a prime with probability ≈ 1/n. Thus
we can sample an n-bit prime by repeatedly sampling random n-bit numbers and checking whether
or not they are prime (which can be done in polynomial time). In fact, the prime we obtain in this
way will be larger than 2n/2 with high probability, since with high probability all of our samples
will be larger than 2n/2.

3.2 The Permanent Protocol

Suppose the verifier is given a boolean matrix M and wants to check that Perm(M) = k. Let M1,i

denote the matrix obtained by deleting row 1 and column i from the matrix M . Then:

Perm(M) =

n∑
i=1

M1,iPerm(M1,i).

Consider the function D that maps an index i ∈ [n] to the matrix D(i) = M1,i. By Fact 3, we
can write D(x) for n × n matrix whose entries are all polynomials of degree n − 1 in x such that
D(i) = M1,i. Here is a first attempt at a protocol for the verifier:

1. If n = 1, the verifier checks that M1,1 = k.

2. The verifier asks the prover to send a prime 22n > p > 2n, and checks that it is in fact a
prime (which can be done in polynomial time) larger than k.

3. If n > 1, verifier asks the prover to send the polynomial the degree n2 polynomial g ∈ Fp[X],
g(X) = Perm(D(X)).

4. The verifier checks that k =
∑n

i=1M1,i · Perm(D(i)).

5. The verifier picks a uniformly random a ∈ Fp and recursively checks that Perm(D(a)) = g(a).

8 Interactive Proofs-3

3.3 Analysis of the Protocol

If Perm(M) = k, then k ≤ 2n and there is a prime p as required (we know that the primes are
sufficiently dense for such a prime to exist. Then we have that Perm(M) = k mod p. Perm(D(X))
is a polynomial if degree at most n2 so the prover that responds honestly will convince the verifier
to accept with probability 1. It only remains to show that a dishonest prover cannot fool the verifier
except with small probability.

Suppose Perm(M) 6= k. Then it must be that Perm(M) 6= k mod p, since p is larger than both
Perm(M) and k. Note that if the prover sends g(X) = Perm(D(X), then the verifier will imme-
diately conclude that Perm(M) 6= k, thus the verifier can only be fooled if g(X) 6= Perm(D(X)).
Then we have that

Pr
a

[g(a) = Perm(D(a))] ≤ n2/p,

since both g(X),Perm(D(X)) are degree n2 polynomials. Indeed, the only way that the prover can
succeed once he has sent the wrong polynomial g(X) is if g(a) = Perm(D(a)) in some recursive call.
The recursion has at most n steps, so by the union bound, the probability that the prover succeeds
is at most n3/p� 1/3, for n large enough.

4 Aside: Average case algorithms for Permanent are Enough

Suppose we managed to design an algorithm A such that for a random n× n matrix R,

Pr[A(R) 6= Perm(R)] < 1/10n.

Here is a trick we can use to obtain a randomized algorithm for computing the permanent on every
input matrix M .

1. Repeatedly sample numbers until we obtain a prime p such that 22n > p > 2n. We shall do
all arithmetic modulo p.

2. Sample a random n× n matrix Y with coefficients from Fp.

3. Compute values A(M + Y), A(M + 2Y), . . . , A(M + nY).

4. Using Fact 3, compute the unique degree n− 1 polynomial g(t) such that g(t) = A(M + tY).

5. Output g(0).

For the analysis, observe that since Y is uniformly distributed, so it iY for every i ∈ [n]. Thus,
M + iY is also uniformly distributed modulo p. Thus, by the union bound,

Pr[A(M + iY) = Perm(M + iY) for all i ∈ [n]] ≥ 1− 1/10.

This means that g(t) = Perm(M + tY) with high probability, and so g(0) = Perm(M) with high
probability.

8 Interactive Proofs-4

