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1 A protocol for counting satisfying assignments

We continue to exhibit the power of interaction by showing how it can be used to solve any problem
in PSPACE. Recall that the problem of computing whether a totally quantified boolean formula
is true is complete for PSPACE, so it will be enough to give an interactive protocol that verifies
that such a formula is true.

As a warmup, let us consider the case when we are given a formula of the type ∃x1, . . . , xnφ(x1, . . . , xn)
and want to count the number of satisfying assignments to this formula. Since the permanent is
complete for #P, we can reduce this counting problem to the computation of the permanent, and
then use the interactive protocol from the last lecture, but let us be more direct.

As in the protocol for the permanent, we shall leverage algebra. Since polynomials are much
nicer to deal with than formulas, let us try to encode the formula φ using a multivariate polynomial.
Here is a first attempt at building such an encoding gate by gate:

• x ∧ y → xy.

• ¬x→ 1− x.

• x ∨ y → x+ y − xy.

This encoding gives us a polynomial gφ that computes the same value as the formula φ, however
it is not clear that gφ can be computed in polynomial time. The problem is the encoding for ∨
gates, which could potentially double the size of the polynomial obtained in each step. Instead, we
use the more clever encoding:

• x ∨ y → 1− (1− x)(1− y).

This allows us to obtain a polynomial gφ which can be written down in time polynomial in the size
of φ.

Then the task of counting the number of satisfying assignments to φ reduces to computing∑
x∈{0,1}n gφ(x). Following the ideas used in the protocol for the permanent, here is a protocol for

a verifier that checks that
∑

x∈{0,1}n gφ(x) = k.

1. Ask the prover for a prime 22n > p > 2n, and check that it is correct. Reject if k < p. All
arithmetic is henceforth done modulo p.

2. If n = 1, check the identity by computing it.

3. If n > 1, ask the prover for the degree n polynomial

f(X) =
∑

x2,...,xn∈{0,1}n−1

gφ(X,x2, . . . , xn).
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4. Check that f(0) + f(1) = k mod p.

5. Pick a random element a ∈ Fp and recursively check that

f(a) =
∑

x2,x3,...,xn∈{0,1}n−1

gφ(a, x2, . . . , xn)

For the analysis, note that f(X) is indeed a degree n polynomial, since there are at most n
gates in the formula φ. Thus if

∑
x∈{0,1}n gφ(x) = k, an honest prover can convince the verifier

with probability 1.
If
∑

x∈{0,1}n gφ(x) 6= k, then the if the prover succeeds, it must be that

f(X) 6=
∑

x2,...,xn∈{0,1}n−1

gφ(X,x2, . . . , xn),

for if the prover is honest, he will be caught immediately.
Since f(X),

∑
x2,...,xn∈{0,1}n−1 gφ(X,x2, . . . , xn) are both degree n polynomials, we have that

Pr
a

f(a) =
∑

x2,...,xn∈{0,1}n−1

gφ(a, x2, . . . , xn)

 ≤ n/p,
so with high probability, the prover is left with trying to prove an incorrect statement in the
next step. By the union bound, the probability that the prover succeeds in any step is at most
n2/p� 1/3 for large n.

2 A protocol for TQBF

To handle checking whether a formula of the type ∃xi∀x2∃x3 . . . ∀xnφ(x1, . . . , xn) is true, it is clear
that this is equivalent to checking the identity that∑

x1

∏
x2

∑
x3

. . .
∏
xn

gφ(x1, . . . , xn) = k > 0.

This is just another polynomial identity, so a first attempt might be to use a protocol of the
following type:

1. Ask the prover for a suitably large prime p, and check that it is correct. Reject if k < p. All
arithmetic is henceforth done modulo p.

2. If n = 1, check the identity by computing it.

3. If n > 1, ask the prover for the polynomial

f(X) =
∏
x2

,
∑
x3

, . . . ,
∏
xn

gφ(X,x2, . . . , xn).

4. Check that f(0) + f(1) = k mod p (or f(0) · f(1) = k mod p as appropriate.
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5. Pick a random element a ∈ Fp and recursively check that

f(a) =
∑

x2,x3,...,xn∈{0,1}n−1

gφ(a, x2, . . . , xn)

There are several problems with this approach. For one thing the product term can generate
the product of 2n terms giving a number k that is as large as 22n . So the prover cannot even write
down k using less than 2n bits, which means that the verifier cannot compute with it in polynomial
time. Similarly, the degree of the polynomial f can be as large as 2n, so the verifier cannot do any
computations with it.

In order to handle the first problem, we appeal to the prime number theorem and the chinese
remainder theorems:

Theorem 1 (Prime Number Theorem). Let π(t) denote the number of primes in [t]. Then

lim
t→∞

π(t)

t/ ln t
= 1.

The theorem says that Θ(1/n) fraction of all n bit numbers are prime.

Theorem 2 (Chinese Remainder Theorem). Let a, b be relatively prime numbers. Then the function
c : {0, 1, . . . , ab − 1} → {0, . . . , a − 1} × {0, . . . , b − 1} given by c(x) = (x mod a, x mod b) is a
bijection.

A consequence of the Chinese Remainder theorem is that if k is divisible by distinct primes
p1, . . . , pt, then k must be bigger than the product

∏
i pi.

Now consider the set of primes in the interval [2n, 210n]. By Theorem 1 there Θ(210n/n) primes
that are less than 210n, but at most 2n of them are less than 2n, so this interval must contain
Θ(210n/n) primes. The product of all these primes is at least (2n)Ω(210n/n) = 2Ω(210n). Thus, for n
large enough, the product is much larger than

∑
x1

∏
x2

∑
x3
. . .

∏
xn
gφ(x1, . . . , xn) = k.

Thus by Theorem 2, if k > 0, there must be some prime p ∈ [2n, 210n] such that∑
x1

∏
x2

∑
x3

. . .
∏
xn

gφ(x1, . . . , xn) = k 6= 0 mod p.

This allows us to fix the first problem: the verifier can ask the prover to send this prime and the
value of k mod p, and perform all arithmetic modulo p.

Next we turn to the second issue. While it is true that the polynomials generated in the above
proof can have high degree, note that since we are only interested in evaluating the polynomials we
are working with over inputs that are bits, it never makes sense to raise a variable to degree more
than 1: x2 = x for x ∈ {0, 1}. Thus, we could ask the prover to work with the polynomial that is
obtained from gφ by replacing all high degree terms with terms that have degree 1 in each variable.
However, we cannot trust that the prover will be honest, so we shall have to check that the prover
does this part correctly.

Given any polynomial g(X1, . . . , Xn) define the operator L1 as

L1g(X1, . . . , Xn) = X1 · g(1, X2, . . . , Xn) + (1−X1) · g(0, X2, . . . , Xn).

Then note that L1g takes on the same value as g when X1 ∈ {0, 1}. Similarly, we can define Li for
each i ∈ [n].
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Our final protocol is then as follows. In order to prove that∑
x1

∏
x2

. . .
∏
xn

gφ(x1, . . . , xn) 6= 0,

we shall instead ask the prover to prove that∑
x1

L1

∏
x2

L1L2

∑
x3

L1L2L3

∏
x4

. . . Ln−1Ln
∏
xn

gφ(x1, . . . , xn) = k 6= 0 mod p.

In order to describe the protocol, in general we are going to be trying to prove a statement of
the form O1O2Otgφ(x1, . . . , xn) = k mod p, where Oi is either

∑
xi

,
∏
xi

or Li for some i. Some
of the variables xi may be set to constants ai during this process, but this will not change the
protocol.

The verifier proceeds as follows:

1. Ask the prover for a prime p ∈ [2n, 210n] and k ∈ [p− 1] such that

O1O2Otgφ(x1, . . . , xn) = k mod p,

2. If t = 1, check the identity by computing it and terminate the protocol.

3. If O1 is
∑

xi
,

(a) Ask the prover for the polynomial

f(X) = O2O3 . . . gφ(x1, . . . , xi−1, X, xi+1, xn),

which is a polynomial of degree at most 2.

(b) Check that f(0) + f(1) = k mod p .

4. If O1 is
∏
xi

,

(a) Ask the prover for the polynomial

f(X) = O2O3 . . . gφ(x1, . . . , xi−1, X, xi+1, xn),

which is a polynomial of degree at most 2.

(b) Check that f(0) · f(1) = k mod p .

5. If O1 is Li, then xi = ai has been set to be a constant.

(a) Ask the prover for the polynomial

f(X) = O2O3 . . . gφ(x1, . . . , xi−1, X, xi+1, xn),

which is a polynomial of degree at most 2.

(b) Check that aif(0) + (1− ai)f(1) = k mod p .

6. Pick a random element a ∈ Fp and recursively check that

f(a) = O2O3 . . . gφ(x1, . . . , xi−1, a, xi+1, xn)

As before, an honest prover can convince the verifier with probability 1. On the other hand, a
dishonest prover can succeed only by sending an incorrect polynomial f , and then such a prover
will manage to convince the verifier with probability at most O(t/p)� 1/3.
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