
Lecture 11: Randomized Algorithms
Anup Rao

May 2, 2022

Schwartz-Zippel Lemma

Recall that a polynomial p(x, y, z) is an expression of the form

14x2y5z8 − 3x3 + 17y6z3.

The degree of the polynomial is the maximum of the sums of the
powers of the variables in any monomial. So in the last example, the
degree is 15.

The Schwartz-Zippel Lemma turns out to be quite useful for ran-
domized algorithms:

Lemma 1. Let p(x1, . . . , xn) be a polynomial of degree d, such that p is
not the 0 polynomial. Let S be any set of numbers, and let a1, . . . , an be n
random numbers drawn from S. Then Pr[p(a1, . . . , an) = 0] ≤ d/|S|.

Proof We prove the lemma by induction on n. When n = 1, the
theorem follows from the fact that any non-zero degree d polynomial
in one variable has at most d roots. Thus p(a) = 0 only when a is a
root, which happens with probability at most d.

For the general case. Let us write the polynomial in the form

p(x1, . . . , xn) = x`n · q(x1, . . . , xn−1) + r(x1, . . . , xn),

where here r is a polynomial in which the degree of xn is at most
`− 1. So we simply gather all the terms which have maximum degree
in xn.

Now let E1 be the event that p(a1, . . . , an) = 0, and let E2 be the
event that q(a1, . . . , an−1) = 0. Then we have that

Pr[E1] = Pr[E1 ∧ E2] + Pr[E1 ∧ ¬E2]

= Pr[E2] · Pr[E2|E1] + Pr[¬E2] · Pr[E1|¬E2]

≤ Pr[E2] + Pr[E1|¬E2].

By induction, since q is a degree d − ` polynomial, Pr[E2] ≤ (d −
`)/|S|. Since after x1, . . . , xn−1 are fixed in ¬E2, we have that p(a1, . . . , an−1, xn)

is a non-zero polynomial of degree `, we have that Pr[E1|¬E2] ≤
`/|S|. Thus Pr[E1] ≤ d/|S|.

Application: Algorithm for Perfect Matching

Given a bipartite graph G with n vertices on the left and n vertices
on the right, a perfect matching in the graph is a set of n disjoint

lecture 11: randomized algorithms 2

edges in the graph. Here we give a simple randomized algorithm for
computing whether or not a given graph contains a perfect matching.

Recall that the determinant of an n× n matrix M is defined to be

det(M) = ∑
π ∈ Sn

sign(π)
n

∏
i=1

Miπ(i),

where here Sn is the set of permutations on n elements, and sign(π)

is either 1 or −1 depending on the permutation. We have algorithms
for computing the determinant that run in time O(n3).

Now consider the matrix obtained from the input graph by setting

Mij =

xij if (i, j) is an edge,

0 otherwise.

Then we have that det(M) is non-zero if and only if the graph has a
perfect matching! Thus to test whether or not the graph has a perfect
matching, it is enough to determine whether the polynomial det(M)

is non-zero or not. Observe that det(M) is a polynomial of degree at
most n. Calculating this polynomial explicitly is too time consuming,
since in general it may have an exponential number of monomials.
Instead the following randomized algorithm works:

Input: A bipartite graph G with n vertices on each side.
Result: Whether or not G contains a perfect matching
For i, j ∈ [n], sample aij uniformly at random from the set
{1, 2, . . . , 10n};

Set

Aij =

aij if (i, j) is an edge,

0 otherwise ;

if det(A) = 0 then
Output “No perfect matching”;

else
Output “There is a perfect matching”;

end

Algorithm 1: Algorithm for deciding perfect matching

If the graph has no perfect matching, then clearly the polynomial
det(M) = 0, so the algorithm always outputs that there is no perfect
matching. However, when the graph does contain a perfect matching,
the probability that det(A) = 0 is at most 1/10 by the Schwartz-
Zippel lemma.

lecture 11: randomized algorithms 3

Polynomial Identity Testing

One can ask whether there are interesting problems that are known
to be in BPP but not known to be in P. Although there are many ex-
amples of problems for which the fastest algorithms are randomized
(for example, primality testing), there are not so many examples for
which the only known algorithm is randomized. A key such example
is the problem of polynomial identity testing.

We are given an arithmetic circuit (namely a circuit that uses mul-
tiplication and addition gates). The goal is to determine whether the
polynomial computed by the circuit is identically 0. There is a subtle
issue here that needs to be clarified. Note that two different polyno-
mials may compute the same function on a particular set of inputs.
For example, if the inputs are all binary, then x2

i = xi for any variable
xi. Indeed, if we changed the problem above to ask whether or not
the arithmetic circuit computes the 0 function on binary inputs, then
we obtain an NP-complete problem.

There is a simple randomized algorithm for identity testing. We
pick random integers from a large enough set and evaluate the circuit
on those inputs. If the circuit computes a non-zero polynomial, it can
be shown that the output will be non-zero with high probability. To
actually make this work, we need to make sure that evaluating the
circuit can be done efficiently. Indeed the evaluation can easily com-
pute a number that is as big as 22s

with a circuit of size s, which is
too big to manipulate. It turns out that one can just do all the evalu-
ations modulo a large random prime number p and obtain the same
guarantees.

We do not know how to get a deterministic algorithm for this
problem.

	Schwartz-Zippel Lemma
	Application: Algorithm for Perfect Matching
	Polynomial Identity Testing

