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Suppose we want to compute the polynomial Xd. This can be done
by repeatedly squaring X with a circuit of size log d. It is easy to
see that this construction is tight: each additional gate can at most
double the degree of the polynomials computed by the circuit, so at
least log d multiplications are needed to get degree d.

What about if we want a circuit that simultaneously computes
each of the polynomials Xd

1 , Xd
2 , Xd

3 , . . . , Xd
n? One way to do this is to

compute each one separately, for a total size of n log d. Is this the best
one can do?

You might think this should be trivially true, but there is an ex-
ample from Matrix multiplication that should give you pause. By
counting arguments, you can show that there is an n × n Boolean
matrix A such that computing Ax requires Ω(n2/ log n) circuit size.
This suggests that computing Ax1, Ax2, . . . , Axn (where x1, . . . , xn are
independent column vectors) should require Ω(n3/ log n) circuit size.
But this is the same as computing AX for an n× n matrix X, which
can be done with algorithms (and so circuits) of complexity O(n2.34).

Nevertheless, in our setting, we can show that there is no such
magic circuit:

Theorem 1 (Bauer and Strassen). Any arithmetic circuit computing
Xd

1 + Xd
2 + . . . + Xd

n must use Ω(n log d) wires.

In particular, we get the following easy corollary:

Corollary 2. Any arithmetic circuit computing each of Xd
1 , Xd

2 , . . . , Xd
n

must use Ω(n log d) wires.

There are two parts to the proof of Theorem 1. First we prove
Corollary 2. Then we show that any size s circuit that computes
Xd

1 + . . . + Xd
n can be used to obtain a size O(s) circuit computing

Xd
1 , Xd

2 , . . . , Xd
n. Actually you can show that any circuit that computes

a polynomial p can be used to obtain a circuit that computes all the
partial derivatives of p in similar size, which gives what we want.

To see this, we proceed by induction on the number of wires in
the circuit. Suppose we have a circuit computing p(X1, . . . , Xn) us-
ing s wires. Suppose there is a gate in the circuit that computes
a function of two of the input variables, say X1 · X2. Replace this
gate by the variable Y, to obtain a new circuit with fewer wires that
computes a function q(X1, . . . , Xn, Y), where here p(X1, . . . , Xn) =

q(X1, . . . , Xn, X1 · X2). By the chain rule for partial derivatives, we
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have that if i > 2, then
∂p
∂Xi

=
∂q

∂Xi
,

and
∂p

∂X1
=

∂q
∂X1

+
∂q
∂Y
· X2,

∂p
∂X2

=
∂q

∂X2
+

∂q
∂Y
· X1.

By induction, all the partial derivatives of q can be computed by
a circuit of size O(s − 1), so all the partial derivatives of p can be
computed using a circuit of size O(s). Substituting Y = X1 · X2

recovers the partial derivatives of p. The same idea works for Y =

X1 + X2.
Next, we prove the Corollary with a proof due to Smolensky that

is based on dimension counting. Suppose that there is some circuit
C with s wires that computes Xd

1 , . . . , Xd
n. For a polynomial r(Y; Z) in

variables partitioned into two lists Y, Z, we say r has degree (d− 1, 1)
if the degree of any variable in Y is at most d − 1 and any variable
in Z is at most 1. Given two lists of polynomials p = p1, . . . , pk ∈
F[X1, . . . , Xn] and q = q1, . . . , q` ∈ F[X1, . . . , Xn], define the set of
polynomials

τ(p||q) = {r(p; q) : r has degree (d− 1, 1) }.

We have the following claims:

Claim 3. If f = g× h, then τ( f , p1, . . . , pk||q1, . . . , q`) ⊆ τ(g, h, p1, . . . , pk||q1, . . . , q`).

Indeed, in any degree (d − 1, 1) polynomial r, f t = gtht, so we
obtain a new polynomial r′ in one additional variable that computes
the same thing as r.

Claim 4. If f = g+ h, then τ( f , p1, . . . , pk||q1 . . . , q`) ⊆ τ(g, h, p1, . . . , pk||q1 . . . q`).

Again, in any degree (d − 1, 1) polynomial r, we can replace
f t = (g + h)t and again obtain a degree (d − 1, 1) polynomial q′

that computes the same thing as q.

Claim 5. τ( f , f , p1, . . . , pk||q1, . . . , q`) ⊆ τ( f , p1, . . . , pk|| f d, q1, . . . , q`).

To prove this claim, note that since r has access to two copies of f ,
it can actually compute f t for any t ≤ 2(d− 1). To simulate this new
computation, it is enough to have access to f d with degree up to 1
and f with degree up to d− 1.

Claim 6. If a circuit C uses s wires to compute polynomials p1, . . . , pk at
k distinct gates, then there exist at most s polynomials q1, . . . , qs such that
τ(p1, . . . , pk||) ⊆ τ(X1, . . . , Xn||q1, . . . , qs).
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Proof We prove the claim inductively. Suppose we are working
with the space τ(p1, . . . , pk||q1, . . . , qr), where each pi is a polynomial
computed at a distinct gate of the circuit. Suppose p1 is a polyno-
mial of maximal depth in the circuit (namely it corresponds to the
gate that is farthest away from an input variable). If p1 is equal to
Xi for some i, then we are done, since all pi’s must be at depth 0.
Otherwise, by Claims 3 or 4, we get that τ(p1, . . . , pk||q1, . . . , qr) ⊆
τ(g, h, p2, . . . , pk||q1, . . . , qr), where g, h are polynomials computed at
gates of lower depth in the circuit. g, h may correspond to the same
gate as one of the pi’s, in which case we apply Claim 5 (possibly
twice) to take care of this duplication. If we repeatedly apply this ar-
gument, note that we can apply Claim 5 at most s times. This proves
the claim.

All that remains is to count dimensions. Note that τ(Xd
1 , . . . , Xd

n, X1, . . . , Xn||)
is simply the set of all polynomials in X1, . . . , Xn whose degree in
each variable is less than d2. The dimension of this space is thus
(d2)n = d2n. On the other hand, τ(X1, . . . , Xn||q1, . . . , qs) is spanned
by a set of at most 2s · dn polynomials. Thus 2s · dn ≥ d2n ⇒ s ≥
n log d.


