
Lecture 4: Diagonalization, the Incompleteness Theo-
rem and Complexity Classes
Anup Rao

April 6, 2022

Last time, we discussed the fact that there are functions that
require large circuits. Today, we use a similar strategy to argue that
there are functions that cannot be computed by Turing machines.

Diagonalization

We used counting arguments to show that there are functions
that cannot be computed by circuits of size o(2n/n). If we were to
try and use the same approach to show that there are functions f :
{0, 1}∗ → {0, 1} not computable Turing machines we would first try
to show that:

turing machines � # functions f .

This approach doesn’t seem like it makes any sense at first, because
both numbers here are infinite. Luckily, mathematicians have long
studied how to compare the sizes of infinite sets.

Recall the definitions of the following sets:

N = {1, 2, 3, . . . } the natural numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . . } the integers

2N = {A ⊆N} the set of sets of natural numbers

Q = {i/j : i, j ∈ Z, j 6= 0} the rational numbers

R =

{
lim
i→∞

xi : x1, x2, . . . ∈ Q is a convergent sequence
}

the real numbers

To compare the sizes of these sets, we use the concept of countabil-
ity. A function φ : N → S is said to be surjective if for every s ∈ S,
there is an i ∈N such that φ(i) = s.

Definition 1. A set S is countable, if there is a surjective function φ :
N→ S.

Equivalently, S is countable if there is a list φ(1), φ(2), . . . of ele-
ments from S, such that every element of S shows up at least once on
the list.

Let us try to understand which of the sets we have discussed are
countable.

lecture 4: diagonalization, the incompleteness theorem and complexity classes 2

Fact 2. N is countable.

Proof Consider the list 1, 2, 3, This obviously contains every
element of N.

Fact 3. Z is countable.

Proof Consider the list 0, 1,−1, 2,−2, 3,−3, This obviously
contains every element of Z.

Fact 4. Z×Z = {(i, j) : i, j ∈ Z} is countable.

Proof Consider the list

(0, 0), (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0),

(−1,−1), (0,−1), (1,−1), (2,−1), . . . ,

shown in Figure 1. This list contains every element of Z×Z. Indeed,
we are enumerating all pairs (i, j) where the max{|i|, |j|} is 0, then
all pairs where max{|i|, |j|} is 1 and so on. Clearly, every pair occurs
somewhere in the list.

(0,0)

Figure 1: Enumeration of Z×Z.

Fact 5. Q is countable.

Proof Since Z×Z is countable, just take the list of all pairs from
Z×Z, and discard an entry if j = 0 and replace it with i/j if j 6= 0.
This gives an enumeration of Q.

The interesting thing is that some sets can be shown to be un-
countable, using the technique of diagonalization.

lecture 4: diagonalization, the incompleteness theorem and complexity classes 3

Fact 6. 2N is not countable.

Proof Suppose there was some list of sets A1, A2, Then con-
sider the set

T = {i : i ∈N, i /∈ Ai}.

We claim that T is not in the list. Indeed, suppose T = Aj for some j.
Then if j ∈ Aj, j /∈ T by our construction, and if j /∈ Aj, then j ∈ T. In
either case, T 6= Aj.

The proof we just used is called a proof by diagonalization, be- It was discovered by Cantor

cause we can think of doing it using the picture described in Figure
2. We encode each set in our list using a binary string. The set T

A1

A2

A3

A4

A5

1 2 3 4 5

1

0

1

1

1

0

0

0

0

1

1

1

1

0

1

0

0

1

0

0

0

0

1

0

0

A1 = {1,2,…}

A1 = {3,…}

A3 = {1,3,4,5,…}

A4 = {1,…}

A5 = {1,2,3,…}

T = {2,4,5,…} T 0 1 0 1 1

Figure 2: Diagonalization of a list of
sets.

we picked is obtained by taking the set that is obtained by choosing
something that disagrees with the diagonal in the picture.

A very similar idea can be used to show that the real numbers are
not countable:

Fact 7. R is not countable.

Proof Every real number can be thought of as a number with a
potentially infinite decimal expansion.

Suppose r1, r2, . . . is an enumeration of the real numbers. Consider
the real number t = 0.d1d2 . . . , where the i’th digit di is chosen so that
di is not the same as the i’th digit of ri. Then t is a real number that
does not occur anywhere in the list of ri’s, since it disagrees with the
i’th number in the i’th digit after 0.

A very similar idea gives an impossibility result for Turing Ma-
chines.

Theorem 8. There is a function that is not computed by any Turing Ma-
chine.

lecture 4: diagonalization, the incompleteness theorem and complexity classes 4

Before we see the the simple proof, let us point out that this is
philosophically a very powerful fact. A consequence of it is that
assuming the Church-Turing Thesis is true, there are some ways to
manipulate information that can never occur in the universe. It seems
hard to imagine a physical process that violates the Church-Turing
thesis, and it also seems hard to stomach the fact that the universe
cannot manipulate information in a particular way, yet one of those
two (admittedly wishy washy) strange things must happen.

We shall need some notation before discussing the proof. Given a
string α, we write Mα to denote the Turing Machine whose code is α.
Proof Consider the function f : {0, 1}∗ → {0, 1} defined as follows:

f (α) =

1 if Mα(α) = 0

0 else.

No Turing Machine can compute this function, for if there was
some machine that could, then let γ denote the binary encoding of
its code. Then we have that Mγ(γ) = f (γ), but this contradicts the
definition of f , since if f (γ) = 0, then Mγ(γ) cannot be 0, and if
f (γ) = 1, Mγ(γ) cannot be 1.

You may object that the uncomputable f that we found above is
very unnatural, but actually it is not hard to come up with natural
examples that are also impossible to compute using Turing Machines.

For example, we can define the function HALT : {0, 1}∗ → {0, 1}
that takes as input two strings α, x, and then decides whether Mα(x)
halts or runs forever. This seems like a very useful function to com-
pute, but it is also uncomputable.

Theorem 9. HALT is not computable by a Turing Machine.

Proof Suppose it was. Then consider the machine M that on in-
put α first simulates HALT(α, α). If the answer is that Mα(α) halts,
then M simulates Mα(α) and outputs the opposite of its output. If
Mα(α) does not halt, then M outputs 0. Then M computes the un-
computable function f above.

Gödel’s Incompleteness Theorem

Diagonalization was also used to prove Gödel’s famous incomplete-
ness theorem. The theorem is a statement about proof systems. We
sketch a simple proof using Turing machines here.

A proof system is given by a collection of axioms. For example,
here are two axioms about the integers:

lecture 4: diagonalization, the incompleteness theorem and complexity classes 5

1. For any integers a, b, c, a > b and b > c implies that a > c.

2. For any integer a, a + 1 > a.

Given a list of such axioms, a proof is a sequence of statements
that uses the axioms to prove that a statement is true. For example,
to prove that a > b implies that a + 1 > b, we can combine the
assumption a > b with the axiom a + 1 > a and the first axiom, to
prove a + 1 > b.

Prior to Gödel’s work, mathematicians were trying to axiomatize
all of mathematics. They were looking for a set of finite axioms that
could be combined to prove any proof statement. Godel proved that
this a doomed project.

A set of axioms is consistent if the axioms don’t contradict each
other. The set of axioms is complete if every true statement can be
derived from the set of axioms. Godel proved:

Theorem 10. Every consistent finite set of axioms is incomplete.

We give an alternate proof due to Chaitin. Given x ∈ {0, 1}∗, its
Kolmogorov complexity K(x) is the length of the shortest program α

such that Mα(.) = x. Namely it is the length of the shortest program
that outputs x. For each x ∈ {0, 1}∗, N ∈N, let Sx,N be the statement

K(x) > N.

Fact 11. For every N, there is an x for which Sx,N is true.

Proof There are only a finite number of programs of length N, so
for each N, there are only a finite number of x’s such that K(x) ≤ N.
This means that almost all statements Sx,N are true.

To prove Godel’s theorem, suppose there is some finite set of ax-
ioms A. Consider the following program MN :

• Enumerate over all pairs (x, α), where x ∈ {0, 1}∗, α ∈ {0, 1}∗. If α

describes a proof of Sx,N using the axioms A, output x.

If the finite set of axioms were complete, MN would always halt,
since it would find some string x and a proof α proving Sx,N . But
the program MN can be described using just O(log N) bits, and it
outputs a string x for which K(x) > N. For N large enough, this is a
contradiction, and so A must be incomplete.

Complexity Classes

let us talk complexity classes. We are interested in classifying functions
according to their complexity, so it makes sense to lump functions
into sets of similar complexity:

lecture 4: diagonalization, the incompleteness theorem and complexity classes 6

Definition 12. Define DTIME(t(n)) to be the set of functions

DTIME(t(n)) = { f : {0, 1}∗ → {0, 1}| f is computable in time O(t(n))}.

Similarly,

Definition 13. Define DSPACE(s(n)) to be the set

DSPACE(s(n)) = { f : {0, 1}∗ → {0, 1}| f is computable in space O(s(n))}.

Once we have these definitions, we can try to define what it means
for a function f : {0, 1}∗ → {0, 1} to be efficiently computable. A
reasonable definition of efficient computation should allow enough
time to read all of the input, which takes Ω(n) time. So we should
definitely include DTIME(n) in our set of efficiently computable
functions. Further, if one algorithm calls another as a subroutine, and
both are efficient, we would like to say that the combined algorithm
is also efficient. The minimal class satisfying these assumptions is the
class

Definition 14. P =
⋃

c≥1 DTIME(nc).

Of course there is a whole spectrum of classes above P. For exam-
ple:

Definition 15. EXP =
⋃

c≥1 DTIME(2nc
).

And,

Definition 16. E =
⋃

c≥1 DTIME(2cn).

For space bounded computation, we need to have enough space to
manipulate pointers into the inputs, which takes log n bits, before we
get interesting classes. The first such class is:

Definition 17. L = DSPACE(log n).

Definition 18. PSPACE =
⋃

c≥1 DSPACE(nc).

Obviously if t(n) = O(t′(n)), then DTIME(t(n)) ⊆ DTIME(t′(n)).
But is the containment strict? Does giving a Turing Machine more
time actually allow it to compute things that it cannot compute with-
out the extra time?

	Diagonalization
	Complexity Classes

