
Lecture 5: Hierarchy Theorems
Anup Rao

April 11, 2022

In the last lecture, we showed that there are natural functions
that cannot be computed by Turing machines. To do this, we used the
technique of diagonalization. In this lecture, we shall combine diag-
onalization with the universal simulation ability of Turing machines
to show that Turing machines with more time/space are strictly more
powerful than Turing machines with less time/space.

We are going to use diagonalization to show that Turing Machines
that have more time can compute things that are not computable by
Turing Machines with less time. Such a result is called a hierarchy
theorem, it shoes that there is a hierarchy of power that comes with
increasing computational resources. The basic idea is that a Turing
Machine with more resources can simulate every machine that re-
quires fewer resources and do the opposite of what it does on some
input. To formally prove the hierarchy theorems, we need some more
concepts:

Definition 1 (Time Constructible Functions). We say that the map
t : N → N is time constructible if t(n) ≥ n and on input x there is a
Turing Machine that computes t(|x|) in time O(t(|x|)).

Almost every running time or space bound you can think of like
n5, 2n, 22n

is time constructible and space constructible. (But not all
functions are time constructible, since not all functions can be com-
puted by turing machines). We shall also need a result about simu-
lating turing machines by Turing Machines, that we discussed in the
third lecture:

Theorem 2. There is a turing machine M such that given the code of any
Turing machine α and an input x as input to M, if α takes T ≥ 1 steps to
compute an output for x, then M computes the same output in O(CT log T)
steps, where here C is a number that depends only on α and not on x.

We are now ready to prove our first hierarchy theorem:

Theorem 3 (Time Hierarchy). If r, t are time-constructible functions
satisfying r(n) log r(n) = o(t(n)), then DTIME(r(n)) (DTIME(t(n)).

Proof Recall that Mα denotes the Turing Machine whose code is α.
The key idea is to use a function very similar to the one we defined

lecture 5: hierarchy theorems 2

in the last lecture for our diagonalization proofs:

f (α) =

1 if Mα(α) halts and outputs 0 after t(|α|) steps of the simulator,

0 else.

We claim:

Claim 4. f can be computed in time O(t(n)).

To compute f , we first compute t(|α|) and then apply Theorem
2 to simulate Mα(α) for t(|α|) steps of the simulator. So, f can be
computed in time O(t(n)).

On the other hand, we shall show:

Claim 5. f cannot be computed in time O(r(n)).

If β is the code of a machine that computes f in time c · r(n). Let
Cβ be such that the execution of r steps of the machine Mβ can be
simulated in Cβr log r steps by the universal machine. Then there
must be some binary string β′ that represents the same machine as β,
but is long enough so that

t(|β′|) > Cβ · c · r(|β′|) log r(|β′|)

This is because by assumption r(n) log r(n) = o(t(n)), and so for
large enough n,

t(n) > 2Cβ · c · r(n) log(c · r(n)) > Cβ · c · r(n) log(c · r(n)).

Moreover, we can always add redundant lines to the code in β, until
the code becomes long enough for t(|β′|) > 2Cβ · c · r(|β′|) log r(|β′|).

If Mβ(β′) = 0, then Mβ′(β′) = 0 and so f (β′) = 1 by the guarantee
of Theorem 2. If Mβ(β′) = 1, Mβ′(β′) = 1, and so f (β′) = 0, which
proves that Mβ does not compute f .

Similarly, one can prove a Space hierarchy theorem:

Definition 6 (Space Constructible Functions). We say that the map
s : N → N is space constructible if s(n) ≥ log n and on input x there is
a Turing Machine that computes s(|x|) in space O(s(|x|)).

We saw in lecture 3 that:

Theorem 7. There is a turing machine M such that given the code of any
Turing machine α and an input x as input to M, if α takes S ≥ log |x| space
to compute an output for x, then M computes the same output in O(CS)
space, where here C is a number that depends only on α and not on x.

One can prove the following space hierarchy theorem:

lecture 5: hierarchy theorems 3

Theorem 8 (Space Hierarchy). If q, s are space-constructible functions
satisfying q(n) = o(s(n)), then DSPACE(q(n)) (DSPACE(s(n)).

We leave out the details, since they are exactly the same as the
previous result.

As a consequence of these hierarchy theorems we get:

Corollary 9. P 6= Exp.

Proof On the one hand, P ⊆ DTIME(nlog n). On the other hand, by
Theorem 3, DTIME(nlog n) 6= DTIME(2n), since nlog n = o(2n).

Hierarchy Theorem for Circuits

We define the class SIZE(s(n)) to be the set of functions f : {0, 1}∗ →
{0, 1} that can be computed by circuit families of size s(n).

We have proved the following theorems:

Theorem 10. Every function f : {0, 1}∗ → {0, 1} is in SIZE(O(2n/n)).

Theorem 11. For every large enough n, there is a function f : {0, 1}n →
{0, 1} that cannot be computed by a circuit of size 2n/3n.

We can use this theorem to prove a hierarchy bound for size.

Theorem 12. There is a constant c such that for every functions s(n), s′(n)
satisfying 2n/n > s′(n) > cs(n) > n, we have that SIZE(s(n)) (
SIZE(s′(n)).

Proof Suppose every function on n bits can be computed using a
circuit of size k2n/n. Set c = 3k. Let ` be such that k2`/` = s′(n).
Then every function on ` bits can be computed by a circuit of size
s′(n). On the other hand, there is some function on ` bits that cannot
be computed using a circuit of size 2`/3` = s′(n)/c, as required.

NP

In the last class, we introduced the concept of complexity classes.
We saw the classes P, L, E, EXP and PSPACE. These classes were Recall: L ⊆ P ⊆ PSPACE ⊆ EXP.

obtained by considering functions that can be computed with limited
time or limited space. Today, we explore a different kind of class, the
class NP.

NP is interesting chiefly because many problems that we would
like to solve efficiently with a computer, but cannot solve, belong
to NP. The list of such problems includes essentially all problems

lecture 5: hierarchy theorems 4

solved today with machine learning, and many other practically
important problems. Before giving the definition of NP, let us see
some examples of problems in NP.

Independent Set Given a graph G and a number k, does the graph
have an independent set of size k? Let ISet(G, k) = 1 if the graph
has an independent set, and 0 otherwise. Recall that an independent set is a set of

nodes that does not contain any edges.
Subset sum : Given a list of numbers a1, . . . , a`, t, is there some subset

of the numbers a1, . . . , a` that sums to t? Let SubSum(a1, . . . , a`, t) =
1 if there is such a subset, and 0 otherwise.

Composite numbers : Given a number N, decide if it is composite or
not. Let Comp(N) = 1 if N is composite, and 0 otherwise.

Matching : Given a graph G and a number k, are there k disjoint
edges in the graph? Let Match(G, k) be 1 if there are k such edges,
and 0 otherwise.

All of these problems have something in common: although it
may be hard to efficiently compute the functions they define, it is
very easy to check a solution if one is given to us! For example, if
ISet(G, k) = 1, then there is a an independent set S of size k, and
given G, S, k, one can check that S is an independent set of size k in
polynomial time. Similarly, if SubSum(a1, . . . , a`, t) = 1, then there is
a subset of the numbers S ⊆ {a1, . . . , a`}, that if given as input can be
verified to have the sum t.

NP is the class of all functions f that have the above property,
where if f (x) = 1, then this can be checked efficiently by an efficient
verifier:

Definition 13. f : {0, 1}∗ → {0, 1} is in NP if there exists a polynomial p
and a polynomial time machine V such that for every x ∈ {0, 1}∗,

f (x) = 1⇔ ∃w ∈ {0, 1}p(|x|), V(x, w) = 1
The witness w is restricted to being
of polynomial length to ensure that
the running time of V is actually
polynomial in the length of x. If we
allowed the witness to be arbitrarily
long, then V would be allowed to run
very long computations on x.

V is usually called the verifier and w is usually called the witness
or certificate or proof. For example, in the independent set problem
above, the witness w would correspond to an independent set, and
the verifier V would be the program that checks that w is in fact an
independent set of size k in the input graph.

Many important combinatorial optimization problems can be cast
as problems in NP.

P, NP and EXP

Fact 14. P ⊆ NP ⊆ EXP.

lecture 5: hierarchy theorems 5

To see the first containment, observe that if f ∈ P, there is a poly-
nomial time Turing machine M with M(x) = f (x). But M itself is a
verifier for f (with a witness of length 0) proving that f ∈ NP.

For the second containment, if f ∈ NP, then f has a verifier
V(x, w). Consider the algorithm that on input x runs over all possible
w and checks if V(x, w) = 1. If any witness makes V(x, w) = 1, the
algorithm outputs 1, otherwise it outputs 0. This algorithm computes
f and runs in exponential time, so f ∈ EXP.

Nondeterministic Machines, and a Hierarchy Theorem

The original definition of NP was by considering Turing machines
that are allowed to make non-deterministic choices: namely after
each step, the machine is allowed to make a guess about which state
to transition to in the next step. The machine computes 1 if there is a
single accepting computational path, and 0 otherwise.

We can define NTIME(t(n)) in the same way as DTIME(t(n)), it
is the set of functions computable by non-deterministic machines in
time O(t(n)), and then you can check that NP =

⋃
c NTIME(nc). Just

as for deterministic time, there is a non-deterministic time hierarchy
theorem:

Theorem 15. If r, t are time-constructible functions satisfying r(n + 1) =
o(t(n)), then

NTIME(r(n)) (NTIME(t(n)).

	NP
	P, NP and EXP
	Nondeterministic Machines, and a Hierarchy Theorem

