
Lecture 6: The problem with Diagonalization
Anup Rao

April 13, 2022

The only way we know how to prove lower bounds on the run-
ning time of Turing Machines is via diagonalization. Can we hope to
show that P 6= NP by some kind of diagonalization argument? In
this lecture, we discuss an issue that is an obstacle to finding such a
proof.

Definition 1 (Oracle Machines). Given a function O : {0, 1}∗ → {0, 1},
an oracle-machine is a Turing Machine that is allowed to use a special
oracle tape to make queries to O. Each query to O takes unit time.

We can define PO, NPO as functions computable in poly time (resp
nondeterministic poly time) with oracle access to O.

Then we have the following theorem:

Theorem 2. There exists an oracle A such that PA = NPA, and an oracle
B such that PB 6= NPB.

The theorem gives a hint about one of the ways in which it will be
hard to determine whether or not P = NP. Any such proof must not
work in the relativized worlds where access to A, B is permitted. On
the other hand, the kinds of proofs that we have seen using diago-
nalization do relativize—the same argument would work even if the
machines have oracle access to some oracle O.
Proof Let A be the function that on input α, x outputs 1 if and
only if Mα(x) outputs 1 in 2|x| steps. Then PA = EXP, since every
exponential time computation can be simulated with access to A, To simulate a machine Mα, that runs in

time 2nc
, we first create a new machine

M′α that runs Mα on the first n1/c bits
of its input. Then we call the oracle on
Mα′ (y), where y is the input of length
nc with x as the first n1/c bits of y.

and every query to A can be simulated in exponential time. Also
NPA = EXP, since in exponential time we can simulate all queries to
A and simulate all nondeterministic choices.

The second part is more interesting. We shall define an oracle
B : {0, 1}∗ → {0, 1} and a function f ∈ NPB such that f /∈ PB. f is
defined in terms of B as follows:

f (x) =

1 if there exists y such that |y| = |x| and B(y) = 1,

0 else.

We first show that f ∈ NPB: a non-deterministic machine can
guess y of the same length as x, and make a single query to verify
that B(y) = 1.

To define B, we shall use diagonalization. Let M1, M2, . . . , Mi, . . . ,
be an enumeration of all machines that query B, with the feature

lecture 6: the problem with diagonalization 2

that every machine occurs infinitely often in the sequence. (Such an
enumeration exists if we allow our programming language to have
redundant lines). Our goal is to make sure that the i′th machine fails
to compute the correct value of f (x) in time 2n/10, for some n where
n = |x|. To do this we define the value of B gradually. We define
the value of B in phases. After each phase, we shall have defined the
value of B on a finite set of strings.

In Phase i, let t be so large that the value of B is not yet defined
on each string of length t. Then run the i’th machine Mi(1t) for 2t/10

steps. Each time Mi queries a string of B whose value has not yet
been defined, return 0 and define the value of B on that string to be
0. If Mi halts with value 1, then set B to be 0 on all strings of length
t. If Mi halts with value 0, then pick a string y of length t that Mi(1t)

did not query (note that such a string always exists since there are 2t

binary stings of length t and Mi did not take more than 2t/10 steps),
and set B(y) = 1.

Set the value of B on strings that are not defined by the above
process to be 0.

Suppose for the sake of contradiction that f ∈ PB. Then consider
the machine M that computes f . Let i be the index such that the i’th
machine in the enumeration is M and t be such that Mi(1t) was used
to define B on strings of length t during the i’th phase. Since the
machine occurs infinitely often, there is an i for which 2t/10 exceeds
the running time of the machine. Clearly, f (1t) 6= M(1t) and hence
M does not compute f .

Polynomial time Reductions

One of the central questions in complexity theory is whether or not
P = NP. Although we don’t know the answer to this question, we
can prove a lot about the class NP, via the concept of polynomial
time reductions:

Definition 3. A function f is polynomial time reducible to a function g if
there is a polynomial time computable function h such that f (x) = g(h(x)).
We write f ≤P g.

Note that the above definition is not the only one that makes
sense. In general it makes sense to allow our reductions to make
multiple calls to the problem being reduced to. However, we will be
able to prove many of our results using the stronger notion above, so
that is what we shall use.

Definition 4. We say f is NP-hard if g ≤P f for every g ∈ NP. We say f
is NP-complete if f is NP-hard and f ∈ NP.

lecture 6: the problem with diagonalization 3

Theorem 5. Here are some easy facts that one can prove about reductions:

• If f ≤P g and g ≤P h, then f ≤P h.

• If f is NP-hard and f ∈ P, then P = NP.

• If f is NP-complete, then P = NP if and only if f ∈ P.

NP-complete problems

The above definitions make sense because we do know of examples
of NP-complete problems.

Circuit-Sat

Definition 6. CircuitSat : {0, 1}∗ → {0, 1} is the function that views its
input as a circuit C and outputs 1 iff ∃x such that C(x) = 1.

I have claimed in class that circuits can simulate Turing Machines.
Here is what you can actually prove in this regard:

Theorem 7. If a function f : {0, 1}∗ → {0, 1} can be computed in
time t(n) by a Turing machine, then for every n there is a circuit of size
O (t(n) log t(n)) that computes f restricted to the inputs of size n.

Although we did not prove this theorem in class, we sketched
how you could find a circuit of size O(t(n)2) that computes f . The
idea was to add a layer of gates that maintains the entire state of the
Turing machine—contents of all tapes, pointers, and the line of code
being executed. Then we add a new layer that computes this con-
figuration after one execution step of the Turing machine, using the
earlier configuration as input. A single configuration can be written
down using O(t(n)) gates since we only need to write down the val-
ues of the tapes up to O(t(n)) coordinates. The new configuration
can be computed from the old one with O(t(n)) gates as well. After
repeating this O(t(n)) times, we obtain the final configuration of the
Turing machine, which must include the value of f (x).

Theorem 8. CircuitSat is NP-complete.

Proof It is clear that CircuitSat is in NP. Next we show that for
every f ∈ NP, f ≤P CircuitSat. Let V be a verifier for f . Then to
compute f (x), the reduction will build the circuit Cx(w) that com-
putes V(x, w), where here w are the input variables to the circuit
and x is the input. Since f (x) = 1 if and only if there exists w such
that Cx(w) = 1, we can determine the value of f by computing
CircuitSat(Cx).

	Polynomial time Reductions
	NP-complete problems

