
Lecture 8: Space Complexity
Anup Rao

April 20, 2022

Next, we turn out attention to space. Recall, that the space So far, we have only discussed time
complexity.complexity of an execution of a Turing machine is defined to be the

maximum value attained by the pointer to the work tape during the
execution. So, it is just a count of the number of cells used on the
work tape during the execution of the algorithm.

The smallest space class that makes sense is L = DSPACE(log n).
This is because even maintaining a pointer to the input takes log n
work space. While we do not necessarily need to maintain such
pointers in the work tape, if we want to be able to design algorithms
that have the same complexity regardless of the specific choices made
for the Turing machine, then we need to maintain such pointers in
order to simulate one Turing machine by another. For example, if we are designing an

algorithm to add two n-bit integers a, b,
then if a, b are written on two different
tapes (or interleaved on one tape), the
computation can be carried out with
O(1) space. If, on the other hand, the
inputs are written on one tape a, b, then
we need space O(log n) in order to
correctly maintain counters to allow us
to scan between the corresponding bits
ai and bi .

As usual the non-deterministic version of this class is when the
machine can make non-deterministic choices, and is called NL =

NSPACE(log n). There is a subtle issue about the definition of NL: if
we allow the machine to remember the non-deterministic choices that
it made for free (for example by giving it access to a guess tape that
it can read from), then the power of the class changes significantly.
Another interesting class is PSPACE =

⋃
c DSPACE(nc). The corre-

sponding non-deterministic class is actually equal to PSPACE, as we
shall prove below.

A very useful fact when composing space bounded computations
is the following:

Claim 1. If it takes space s1(n) ≥ log n to compute f and space s2(n) ≥
log n to compute g, then one can compute the composition f (g(x)) in space
O(s1(n) + s2(n)).

The idea is that in the computation of f , every time we need to
lookup an output symbol of g(x), we can recompute it. Thus, as long
as s1(n), s2(n) are enough to store pointers into the output locations,
we actually only need to sum the spaces to compute the composition.

Savitch’s Algorithm

One of the most interesting small space algorithms is Savitch’s graph
search algorithm.

Theorem 2 (Savitch). Given a directed graph G with two special vertices
s, t, there is an algorithm that can compute whether or not there is a path



lecture 8: space complexity 2

from s to t in the graph, using space O(log2 n).

Proof We shall give a recursive algorithm that can compute the
values A(u, v, i) as defined below:

A(u, v, i) =

1 if there is a path from u to v of length 2i,

0 else.

Note that A(u, v, i) = 1 if and only if ∃z such that A(u, z, i− 1) = 1
and A(z, v, i− 1) = 1. Thus, to compute A(u, v, i), do

1. For all z, recursively compute A(u, z, i− 1) and A(z, v, i− 1), and
output 1 if both computations result in 1.

2. Otherwise output 0.

If the size of the graph is 2s, there are s + 1 recursive calls, where
A(u, v, 0) can be computed trivially by looking up the corresponding
bit in the input. In each recursive call, the algorithm needs to store
only the vertices u, v, z, which takes O(log n) space. Thus the total
space used is O(log2 n).

One reason Savitch’s algorithm is so important is because, in some
sense, graph search is a complete problem for small space computa-
tion. Let us discuss this point next.

Configuration Graphs

Given an input x to a (possibly non-deterministic) Turing machine
M, the configuration graph GM,x is the directed graph where there
is a distinct vertex for every possible value of the pointers to the
input and work tapes, the value of the string written in the work tape
and the current line-number of the line of code that is about to be
executed in the machine. There is an edge from u to v if and only if
the configuration u could possibly become the configuration v after
one step of the program is executed.

Lemma 3. If the machine uses space s(n) ≥ Ω(log n), then the number of
vertices in the configuration graph is at most 2O(s(n)).

Proof The number of options for locations of the pointers is at The number of options for the pointer
that points to the input tape is at
most n. This is because we do not
allow the pointer on the input tape
to move past the actual input. As we
discussed in class, even if we did not
place this restriction, we can prove that
if the Turing machine moves the input
pointer more than 2O(s(n)) steps beyond
the input, then the machine does not
halt. So, even without this restriction,
the number of possible values for the
input pointer is at most 2O(s(n)).

most n · s(n). The number of options for the contents of the work
tape is at most 2O(s(n)). The number of options for the lines of code is
O(1). Thus, the number of different vertices in the graph is at most
the product of these numbers, which is at most 2O(s(n)).



lecture 8: space complexity 3

start

output 1

output 0

Figure 1: An example of a configuration
graph.

In this lecture, we continue our discussion of space complexity
classes. We first introduce a new definition. Given any set of boolean
functions S, we write coS to denote the set

{ f : 1− f ∈ S}.

Thus coNP is the set of functions for which there is an efficiently
verifiable proof that f (x) = 0.

Fact 4. P = coP

Fact 5. L = coL

Fact 6. EXP = coEXP

We do not know if NP = coNP. To show that coNP ⊆ NP, it
would be enough to a polynomial time algorithm that can certify that
a boolean formula is unsatisfiable.

Fact 7. If P = NP, then NP = coNP.

On the other hand, we can show:

Theorem 8. For space constructible s(n), NSPACE(s(n)) = coNSPACE(s(n)).

Proof As usual we focus on the configuration graph. To prove
the theorem, it will be enough to be able to verify that there is no
path from two vertices u, v in the graph, in s(n) space. This would
show that if f (x) = 1 can be certified in space s(n), then f (x) = 0
can also be certified in space s(n). The other direction is completely
symmetric.

We shall prove how to do this by designing a sequence of algo-
rithms. Let Ci denote the set of vertices that are reachable from u in i
steps. Suppose the graph is of size at most 2s.

Claim 9. Given any vertex v and a number i ≤ 2s, there is a non-
deterministic space s(n) algorithm such that:



lecture 8: space complexity 4

• If v ∈ Ci, then some computational path outputs 1

• If v /∈ Ci, then every computational path outputs 0.

The algorithm simply guesses a path from u to v and checks that
the path is a valid path of the graph by checking each edge in order.

Claim 10. Given the size of |Ci−1| = c, and a vertex v, there is a non-
deterministic space s(n) algorithm such that

• If v /∈ Ci, there is some computational path that outputs 1.

• If v ∈ Ci, then every computational path outputs 0.

Since the algorithm is given the size of Ci−1i, the algorithm guesses
each of the vertices of Ci−1 in increasing order, and for each one,
it checks that the vertex is different from the last vertex that was
guessed, and then uses Claim 9 to verify that the vertex is indeed a
member of Ci−1. It also makes sure that the given vertex is not v and
not a neighbor of v. It maintains a count of all the number of vertices
guessed and checks that |Ci−1| vertices are given. If any of the checks
fail, the algorithm outputs 0.

Finally, we argue that given the size of Ci−1, we can certify the size
of |Ci|.

Claim 11. Given the size of |Ci−1| = c′, there is a non-deterministic space
s(n) algorithm such that the algorithm either aborts or outputs |Ci| on every
computational path, and there is some computational path on which the
algorithm outputs |Ci|.

For each vertex v of the graph (in increasing order), the algorithm
uses Claims 9 and 10 to check whether v ∈ Ci or v /∈ Ci, and it
maintains a count of the number of vertices in Ci.

Thus, we obtain an algorithm that can verify that v /∈ Cn in
O(s(n)) space. We first compute Cn by repeatedly using Claim 11

and then we apply Claim 10 to check whether v /∈ Cn.


	Savitch's Algorithm
	Configuration Graphs

