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1 Constraint satisfaction problems

We start by defining bivariate constraint satisfaction problems. Such a problem C is specified by
a bipartite graph with n vertices on each side, edge set E C [n] X [n], and a family of constraints
{Cij}ajyer, with Ci; C [k] x [k]. k is called the alphabet size. Throughout this lecture, we treat
k as a constant. Given such a problem, we define its value:

def
val(C)= max Pr [(a;,b;) € C;;
O bt gl ba) € Cul
where the probability is over a uniformly random edge of the graph, and the maximum is over
assignments a,b to the vertices of the graph. In words, the value is the maximum fraction of
constraints that can be satisfied by any assignment to the vertices of the graph.

1.1 Example: 3-SAT

Let ® be a 3-SAT formula. Let n be larger than both the number of variables and the number of
clauses. We construct a bivariate constraint satisfaction problem from & as follows. Let (i,7) be
an edge in E' C [n] x [n] if and only if the 7’th clause contains the j’th variable. Set k = 7. Think of
every assignment a; € [7] to a vertex on the left as representing one of the 7 satisfying assignments
to the ¢'th clause, and every assignment b; € [2] as corresponding to one of two boolean assignments
to the j’th variable. For each edge (i, j), let C; ; be the set of assignments to the vertices 7, j where
the j’th variable gets the value b; in the assignment a;.

If @, is satisfiable, the value of the corresponding problem is 1. On the other hand, if the value
of the problem is 1, then the maximizing assignment a,b gives a satisfying assignment b for the
variables in ®. Thus, determining whether val(C) = 1 or not is NP-hard, and in fact, NP-complete.

1.2 Probabilistically Checkable Proofs (PCPs) and Parallel Repetition

The PCP Theorem of Arora et al [1] shows that if P # N P, there are no polynomial time approx-
imation algorithms that can guarantee an arbitrarily close approximation to val(C).

Theorem 1 (PCP Theorem [1]). There exists a positive constant o, an alphabet size k, and a
polynomial time computable function f mapping boolean formulas to constraint satisfaction problem
instances with alphabet size k, such that

1 if @ is satisfiable,
<1l—a ifnot.

val(f(®)) is {

If one had a polynomial time algorithm that could distinguish C with val(C) = 1 from value
val(C) < 1 — a, one could use f from the PCP theorem to solve SAT. Thus, the theorem proves
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an amazing qualitative statement: even approximating the value of bivariate constraint satisfac-
tion problems is NP-hard. Raz’s parallel repetition theorem implies the following quantitative
strengthening of the theorem:

Theorem 2 (PCP Theorem + Parallel Repetition). For every e > 0, there is an alphabet size k,
and a polynomial time computable function f mapping boolean formulas to constraint satisfaction
problem instances with alphabet size k, such that

1 if ® is satisfiable,
< e if not.

wal(f(®)) is {

A natural way to try and prove Theorem 2 from Theorem 1 is to find a polynomial time
computable transformation to turn C into C’' such that if val(C) = 1, then val(C’) = 1, but if
val(C) < 1 — a, then val(C') < e. Perhaps the first such transformation one might think of is to
repeat the problem in parallel. Given C as above, we define C? as follows. The vertex set on each
side is the t-fold cartesian product [n]'. i = (i1, ...,%;) is connected to j = (j1,. .., i) in the edge set
of Ct if and only if (i, j,) is an edge of C for each r. Thus, each new edge corresponds to an element
of E'. Finally, we define the constraint C;; = {(z,y) € [k]' x [k]': for all v, (x,,y,) € C, ;. }.

1.3 2-Player Games

Referee
Ae) B(y)
2z Y
Alice Bob

Figure 1: 2 Player Game.

Another way to view bivariate constraint satisfaction problems that will be convenient for us,
is in terms of a particular kind of 2 player game. The game is played by two cooperating players,
Alice and Bob and is officiated by a referee. Alice and Bob are not allowed to talk during the run
of the game. The referee samples a uniformly random edge X,Y from the edge set of C and sends
X to Alice and Y to Bob. Each player then responds with an assignment to the vertex that they
see (A(X),B(Y)). They win the game if and only if (A(X), B(Y)) € Cx y.

Observe that any strategy for playing the above game gives an assignment to the vertices, and
vice versa. Thus, val(C) is the probability that Alice and Bob win the game using the best strategy.
Notice, that we can also assume that Alice and Bob have access to a shared random string that
they can use to generate their answers, since any strategy that uses such a string is simply a convex
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Referee

Figure 2: The repeated game

combination of strategies that are deterministic. So allowing these strategies does not change the
value of the game.

In the parallel version of the game, the referee samples ¢ uniformly random edges (X1, Y1) ... (X, Y?)
and sends (Xp...X;) to Alice and (Y7...Y:) to Bob. They respond with answers A;...A4; =
A(Xy,...,Xy)) from Alice and B ...B; = B(Y1,...,Y;) from Bob. They win if and only if they
win in each coordinate, namely if for all r, (4,, B,) € Cx, y,.

2 The value of repeated games

Clearly, val(C)! < val(C?), since Alice and Bob could use their best strategy for C in each of the
coordinates. One might hope that val(C)! < val(C!). If that was true, we would arrive at Theorem
2 from Theorem 1, since C! is easily computable from C in polynomial time. Indeed, this strategy
will eventually succeed.

However, as the following example shows, strict equality does not always hold:

2.1 A counterexample

Let X, Y be uniformly random bits. The players win the game if and only if either A = B = (1, X)
or A =B = (2,Y). Thus, the players win only if they both decide to guess the same input bit
and succeed in doing so. It is easy to check that the value of this game is 1/2 — if they win when
(X =0,Y =0) and (X =0,Y = 1), Bob must be trying to guess Alice’s bit on every input, so
he must guess incorrectly whenever X = 1. This means they can win on at most two pairs of
questions, no matter what. We show that val(C?) = 1/2, using the following strategy:

A =(1,X1) A=(2,Xy)
By =(1,Y2) B =(2,Y3).

Clearly, they win the parallel repetition whenever X; = Ys, which happens with probability
1/2. To understand what is going on in this example a little better, let us define the events Wy, Wo
to be the event of winning the game in each coordinate, with the above answer strategy. Then
observe that:
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PI‘[Wl AN WQ] = PI‘[Wl] . PI"[W2|W1] = (1/2) - 1.

The first term in this product behaves as we expect. The second term is more interesting.
Conditioned on W7y, we have that Yo = X7 with probability 1! Thus, in this conditioned space,
Alice knows the value of Ys: it is equal to X, which she knows. In some sense, this strategy for
the players allows them to communicate, at least in the probability space obtained by conditioning
on their winning in the first coordinate. As we shall see, this communication is the major obstacle
that needs to be overcome in order to prove strong versions of the parallel repetition theorem.

2.2 Parallel repetition theorems
2.2.1 A weak bound

The first upper bound on val(C!) was obtained by Verbitsky, based on the density version of
the Hales-Jewett theorem. Here we sketch the connection. The Hales-Jewett theorem concerns
structures called combinatorial lines. A set L C [m]* of size m is called a combinatorial line if there
exists a subset K C [t], such that for every z,y € L and i,j € K,r ¢ K, we have z; = z; and
T, = yr. It is a set of m points where the coordinates in K are equal and range over all m values,
and the other coordinates are fixed.

Theorem 3 ([2]). For every m,e there exists a constant to such that if t > to and S C [m]' is of
size at least € - m!, then S contains a combinatorial line.

Verbitsky observed that this theorem implies the following theorem:
Theorem 4 ([5]). If val(C) < 1, then lim;_, val(Ct) = 0.

Theorem 4 easily follows from Theorem 3. Suppose for the sake of contradiction that val(C?)
is at least ¢ for an infinite number of settings of t. Let E be the edge set of C, m = |E| and let
to be as in Theorem 3. Then given any t > to and any strategy for playing C¢, let S C E! be
the set of edges of C! whose constraints are satisfied by the strategy. We claim that |S| < e. If
not, then by Theorem 3, S must contain a combinatorial line L. Alice and Bob can use L to win
C with probability 1 — on question x,y, they can each embed their questions into the unfixed
coordinates of L to obtain t pairs of questions for C! that is an element of L. This can be done
without communicating. They answer according to the strategy for C! to win with probability 1,
contradicting the fact that val(C) < 1.

Theorem 4 is not strong enough to prove Theorem 2, since ty (necessarily) depends on n.
Theorem 4 leaves open the possibility that (say) exp(n) repetitions are necessary (indeed the
dependence of ¢ty on m is a tower of exponentials) to reduce the value of C to less than e, which
means that the time to compute C* would be superpolynomial in n.

2.3 A strong bound

Raz [4] proved the following theorem:

Theorem 5. If val(C) < 1 — «, and k is the alphabet size, then val(Ct) = 2 2ek(®),
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Here we present a simplified version of his proof due to Holenstein [3].
Fix a strategy for the repeated game C’. Let

X" XXy X,

Yyr — YWy Y,
be the random variables of the questions in the game, and let

A" AjAy - Ay

B"  BiBy---B’

be the corresponding answers.
Given any set S C [t], let Wg denote the event of winning in the games corresponding to the
coordinates of S. The proof follows from this lemma:

Lemma 6. There exists a constant y(k, a) such that for all S C [t], with |S| < ~t, either Pr[Wg] <
277 or there exists an index i such that Pr[W;|[Ws] <1 — 1.

Let us first show how to use Lemma 6 to prove Theorem 5. Suppose the value of the game is
at least 277" Then, by repeatedly applying Lemma 6, we get a sequence of indices i1, ..., 4, such
that for each £, Pr(Wy Wy, 5, 3] < 1—~. Thus, Pr[Wy, ;4] < (1 — %) and so we have
argued that for any fixed strategy, Pr[W},] < max{277, (1 — )"}, proving Theorem 5.

In order to prove Lemma 6, we shall need the following facts about divergence, alluded to in
earlier lectures. The first says that an event with probability 27¢ can change a distribution by at
most d in terms of its divergence:

Lemma 7. Let E be an event. Then

D(p(z|E)|p(x)) < log(1/p(E)).
Convexity arguments can be used to prove the following mild generalizations of Lemma 7:

Lemma 8. Let E be an event and A, X be random variables such that the support of A is of size
k. Then,

E [D(p(z|E, A)|lp(x))] < log(k/p(E)).
AlE
Proof
E [D(p(z|A, E)|p(z))]
AlE

< E [log(1/p(A, E))] by Lemma 7
AlE

<log (AEE [1/p(A, E)]) by concavity of log

= log (Z l/p(E))

a

= log(k/p(E)).

10 + additional notes-5



Lemma 9. Let E be an event and U, A, X be random variables such that the support of A is of

size k. Then
E [D(p(z|E, A, U)|p(z|U))] < log(k/p(E)).
AU|E

Proof

E [D(p(z|E, A, U)|p(z|U))]
AU|E

< E [log(k/p(EIU)) by Lemma 7
U|E

< log (k : UHF]E [1/p(E|U)}> by concavity of log

< log (k : ZP(U)/JD(E)>
= log(k/p(E)).

The next lemma says that divergence adds if the base distribution is a product distribution.

Lemma 10. Let p(z,y) and q(x,y) = q(z)q(y) be two distributions. Then

D(p(z,y)llq(z,y))) = D(p(z)|lq(z)) + D(py)lla(y)).

The final lemma says that if the divergence between two distributions is small, then so is the
statistical distance:

Lemma 11. D(pl|lq) > |p — q|*.

Proof of Lemma 6 For a parameter v that we shall set later, let us assume that Pr[Wg] > 277
Without loss of generality let S be the last ¢ — r coordinates:

X1 X, Xpi1...X,
iV, Yin..oY
——

questions in S

Write Xg,Ys, Ag, Bg for the questions and answers in the coordinates of S. Recall that our goal is

to find an i for which Pr[Wy;|[Ws] is small. In order to do this, we must use the fact that the value

of the one shot game is bounded by 1 — a. Unfortunately, the bound of 1 — & only holds when the

questions are distributed according to X,Y. In our world, the questions are instead distributed

according to X;, Y;|Wg. Thus, a first step towards proving the lemma is to show that there is some

coordinate ¢ in which the questions are distributed close to how they were before the conditioning.
This is not too hard to do.
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> ( i)) by Lemma 7
) /() S—

by Lemma 11

2

x; x;

7 W _ 7
< " S) p< vi )
< i ‘WS> —p< i )‘ by convexity (1)

Yi Yi

Thus, the distribution of the questions in the average coordinate changes only by /7 in statis-
tical distance.

Question: Why isn’t this enough to prove the lemma?

One might hope that Alice and Bob can use the following strategy for the one shot game. Given
a pair of questions X,Y, they use shared randomness to sample a uniformly random coordinate
i € t], set X; = z,Y; = y, jointly sample the rest of the questions conditioned on the event
Ws, X; = x,Y; = y, and use the strategy of the repeated game to return the i’th answers A;, B;.
This solution breaks down in the sampling step. Conditioning on Wg can create correlations
between z,y and the rest of the questions. For example, nothing we have argued so far precludes
the fact that Pr[Y; = X;|Ws] = 1. Thus, it could be that to correctly sample Y7, Bob needs to
know x, and since he receives no communication from Alice, it may be impossible for him to sample
Y1 correctly.

As in the proof of the lower bound for the communication complexity of set disjointness, and in
the proof of the direct sum result for communication complexity, we are going to resolve this issue
by breaking the dependence between Alice and Bob’s questions.

Let V. =1V1, Vs, ..., Vi be independent uniformly random bits. Define

X, V,=0
n_{Yi else

~+

= V7= (/1)) |p

=1

U_ T17T27"'7T7‘7XS
N %a‘é)"'a%aYS

We write U_; to denote all of U excluding T}, V;.

Then observe that conditioned on any fixing of Ag, U, Wg, we have that X"|Ag, U, Wy is inde-
pendent of Y"|Ag, U, Wg. This is because U fixes at least one of the questions in every coordinate,
Ag is determined by X™, and once Ag, U are fixed, Wg is determined by Y. Let i be a uniformly
random coordinate in [r]. We shall show that given questions x,y, Alice and Bob can use public
randomness to correctly and consistently sample (with error at most ¢ < a — ) from the distri-
bution p(u,i,as|X; = z,Y; = y, Wg), without communicating. Then, they can then use private
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randomness to sample X", Y conditioned on the variables they have sampled, and then return the
answers A;, B;. Since val(C) < 1—q, it must be the case that the probability of success of this strat-
egy is less than 1 — o. On the other hand, the probability of success is at least E; [Pr[W;|Ws]] — ¢,
proving that E; [Pr[W;|[Ws]] < 1 — v as required.

Next we show how Alice and Bob can sample from p(u,i,as|X; = z,Y; = y, Ws). Recall that
we use the notation p(x) ~ q(z) to denote the fact that |p(x) — ¢(x)] < e. We shall prove the
following two lemmas:

Lemma 12. There is a choice for v(a, k) so that

. . (a—=y)/10 (e—y)/10 ,
p(%$i,yi)'P(UfiaaS|WSJaxi) ~ p(lauf’iuavaiay”WS) ~ p(%l"i,yi)'P(UfivaS’WSJayi)‘
Lemma 13. There is a protocol for Alice and Bob to use public randomness to sample x in such
a way that if Alice’s input is p and Bob’s input is q, Alice’s sample is distributed according to p,

Bob’s sample is distributed according to q, and both parties obtain the same sample with probability
at least 1 — 2|p — q|.

Sketch of Proof Let the public randomness consist of an infinite sequence of tuples

(xla /01)7 (anPZ)v veey

where each z; is a uniformly random element of the universe, and p; is a uniformly random real
number in [0,1]. Alice samples her element by picking the smallest i for which p(z;) > p;, and
sampling x;. Bob does the same using ¢. It is clear that both parties sample an element distributed
according to their respective distributions. They make a mistake exactly when the p; that they
pick lies in between p(z;) and ¢(x;), which happens with probability bounded by 2|p — ¢|. B

Given Lemma 12, Alice and Bob can use public randomness to sample 4, then set x; = x,y; = y
and use Lemma 13 to sample u_;, ag with, Alice using the distribution p(u_;, as|Wg, z;) and Bob
using the distribution p(u—_;, ag|Ws,y;). This would complete the proof.

Proof of Lemma Lemma 12 Recall that Pr[Ws] > 277 and Ag has a support size of at most
k7. We apply Lemma 9 to conclude that
vt +tlogk =log(k"*/27) > E  [D(p(a",y"|U, A, Ws)|lp(z",y"|U)]

U,As|Ws

Since X", Y"|U consist of r independent coordinates, we can apply Lemma 10, to get the bound

.
vttatlogk > E | D(p(xs,y;|U, A, Ws)|lp(xs, y510)
U,As‘WS =1
7;9U714S|I/‘/S
where ¢ is a uniformly random coordinate in [r], independent of all other variables.
Next, apply Lemma 11 to conclude that

3, U,Ag|Wg
> E p(xi,yili, U, A, W) — p(xi, 3ili, U)|]?
1, U,Ag|Ws
= Vt(l+logk)/r > E [lp(zi, yi|U, A, Ws) — p(xi, 4| U)|] (2)
7,U, S
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Set e = \/vt(1 +logk)/r = \/v(1 +1logk)/(1 —7), and let v be small enough so that ¢ <
(o — ) /100.

Then Equation 2 implies that

€2 E Hp(xivyiﬁan Aa WS) —p(xi,y¢|i,U)H

i7U7AS|WS

i,U_i,As|Ws |Uili,Ag,Ws,U_;

3, U_;,As|Ws Xili,As,Ws,U_;

where the inequality follows by considering the part of the inner expectation that corresponds to
Vi=0.
Thus we have shown that

aw

P, Tg, U— lvaS|W5) (y1|2,u71,x@)
1, Ty, U— 1,CLS|WS) (y’L|Z :E’L)

p(i,ﬂii,yz’,u%,aﬂws) (4,
©
(l $Z‘WS) (yz|l 5'32) (u,i,asfi,xi,Ws)
(i
(4,

p
p
p(r,x ) yz’Z 331) ( —z;aS"L $17WS)

Q& e

jp(iaxi7yiaufivaS|WS) p ? x’uyZ) . (U7i7aS|i,$i,WS)a

where in the last step, we used the fact that p(i, z;) ~ p(i, 2;|Ws), which we proved in Equation 1.
Since £ < (o — 7)/100, we obtain that

. (a—v)/10 .
p(zamiayhu—i?aS‘WS) ~ p(17mi7yi).p(u—’iaaS“’?xi?WS)

Similarly, we get

. (a—y)/10 .
p(Z7$i7yi7u—i7aS‘WS) ~ p(Zwri:yi) .p(u—ivaS’Zvyi')WS)

This concludes the proof of Lemma 12. B
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