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Last time we defined the mutual information I(X ∧ Y ) = H(X)−H(X | Y ), and proved that it had the
following properties:

• For all X and Y , I(X ∧ Y ) ≥ 0.

• For all X, Y , and Z, I(X,Y ∧ Z) = I(X ∧ Z) + I(Y ∧ Z | X)

To these we now add the following:

Fact 1. For all random variables X,Y and functions f , I(X, f(X) ∧ Y ) = I(X ∧ Y ).

Proof This follows from the chain rule: I(X, f(X) ∧ Y ) = I(X ∧ Y ) + I(f(X) ∧ Y | X) = I(X ∧ Y ) +
H(f(X)|X) +H(f(X)|X,Y ) = I(X ∧ Y ).

Fact 2. For all X, Y and functions f , I(f(X) ∧ Y ) ≤ I(X ∧ Y ).

Proof By Fact 1 and the chain rule, I(f(X) ∧ Y ) + I(X ∧ Y |f(X)) = I(f(X), X ∧ Y ) = I(X ∧ Y ). The
proof follows from the fact that I(X ∧ Y |f(X)) is non-negative.

1 Graph Entropy

Today, we study a quantity called graph entropy associated with the graph, first considered by Körner [1].
The original motivation for this quantity was to characterize how much information can be communicated
in a setting where pairs of symbols may be confused, though we shall see that it is very useful in a variety
of settings.

A subset S of the vertices V of an undirected graph G = (V,E) is independent if no edge in the graph
has both endpoints in S. Given a graph G, define the graph entropy of G

H(G) = min
X,Y

I(X ∧ Y ),

where the minimum is taken over all pairs of random variables X,Y such that

• X is a uniformly random vertex in G.

• Y is an independent set containing X.

Let us consider some examples:

1. Suppose G has no edges. Then if X is a uniformly random vertex and Y is fixed to be the vertex set
V , we get H(G) ≤ I(X ∧ Y ) = 0. But H(G) ≥ 0, so H(G) must be 0 in this case.

2. Let G be the complete graph on n vertices. Then the only independent set containing a given vertex
u is the singleton set {u}. Thus there is only one available choice for the distribution of X,Y , namely
Pr[Y = {X}] = 1. H(G) = H(X) − H(X | Y ) = log n − 0, because X is completely determined by
Y = {X}.
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3. Let G be the complete bipartite graph Kn,n. Call the two parts of the graph A and B. One possible
choice of joint distribution for X and Y is to first pick X uniformly at random, and then to choose

Y =

{
A if X ∈ A
B otherwise.

This gives us the upper bound

H(G) ≤ I(X ∧ Y ) ≤ H(X)−H(X | Y ) ≤ log(2n)− log n = 1.

On the other hand, we claim that any valid joint distribution must satisfy H(X | Y ) ≤ log n. For if
Y is an independent set, then it must be a subset of either A or B. Thus, H(X|Y ) ≤ log |Y | ≤ log n.
This implies that H(G) ≥ log(2n)− log n = 1.

4. Let G be the unbalanced complete bipartite graph Km,n. We choose X and Y exactly as before and
get the bound

H(G) ≤ log(m+ n)− m

m+ n
logm− n

m+ n
log n = H

(
n

m+ n

)
,

where H(·) denotes the binary entropy function, or the entropy of a biased coin. As in the previous
case, we have that H(X|Y ) ≤ m

m+n logm+ n
m+n log n, proving that H(G) = H( n

m+n ).

5. Let G be a complete r-partite graph, i.e., V = [n] × [r] and E = {
(
(i, j), (k, l)

)
| j 6= l}. Then we

can adapt the proofs from the last two examples to show that H(G) = log r. In fact, we can show
further that if G is r-partite with parts S1, . . . , Sr, the graph entropy of G is the same as H(Z), where
Pr[Z = i] = Pr[X ∈ Si] for uniform vertex X. In particular, H(G) ≤ log r in this case.

2 Useful Properties of Graph Entropy

The power of graph entropy comes from the fact that it can be easily controlled even when the underlying
graph is manipulated in natural ways.

Proposition 3 (Subadditivity). Let G1 = (V,E1) and G2 = (V,E2) be graphs on the same vertex set. Then
their union G = (V,E1 ∪ E2) has entropy H(G) ≤ H(G1) +H(G2).

Proof Let p1(x, y) and p2(x, y) be the distributions that minimize I(X ∧ Y ) for G1 and G2, respectively,
and let us consider the distribution

p(x, y1, y2) = p(x) · p1(y1 | x) · p2(y2 | x).

In other words, we pick X uniformly at random, and conditioned on this choice of X we pick Y1 and Y2
independently according to each of the conditional distributions. For a given choice of X, observe that
Y1 ∩ Y2 contains X and is an independent set in G. Therefore,

H(G) ≤ I(X ∧ (Y1 ∩ Y2))

≤ I(X ∧ Y1, Y2) by Fact 2

= H(Y1, Y2)−H(Y1, Y2 | X)

= H(Y1, Y2)−H(Y1 | X)−H(Y2 | X) since Y1, Y2 are independent conditioned on any fixing of X

≤ H(Y1)−H(Y1 | X) +H(Y2)−H(Y2 | X) by subadditivity of entropy

= H(G1) +H(G2).
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Proposition 4 (Monotonicity). If G = (V,E) and F = (V,E′) are graphs on the same vertex set such that
E ⊂ E′, then H(G) ≤ H(F ).

Proof If X,Y are random variables achieving H(F ), then Y is also an independent set in G, so H(G) ≤
I(X ∧ Y ) = H(F ).

The previous two propositions can be summarized as follows. If G1, G2 are graphs on the same vertex
set, then H(G1) ≤ H(G1 ∪G2) ≤ H(G1) +H(G2).

Next, we consider what happens to the graph entropy when taking disjoint unions of graphs.

Proposition 5 (Disjoint union). If G1, . . . , Gk are the connected components of G, and for each i, ρi =
|V (Gi)|/|V (G)| is the fraction of vertices in Gi, then

H(G) =

k∑
i=1

ρiH(Gi).

Proof First, we shall show that H(G) ≥
∑
ρiH(Gi). Let X,Y be the random variables achieving H(G).

We can write Y = Y1, . . . , Yk, where each Yi is the intersection Y with the vertices of Gi. Define the function
l(x), where l(x) = i if x ∈ V (Gi). Then

H(G) = I(X ∧ Y1, . . . , Yk)

= I(X, l(X) ∧ Y1, . . . , Yk) by Fact 1

= I(l(X) ∧ Y1, . . . , Yk) + I(X ∧ Y1, . . . , Yk | l(X))

≥
∑

i Pr(l(X) = i) I(X ∧ Y1, . . . , Yk | l(X) = i) (I(·) ≥ 0)

=
∑

i ρi (I(X ∧ Yi | l(X) = i) + I(X ∧ Y1, Y2, . . . , Yi−1, Yi+1, . . . , Yk | l(X), Yi))

≥
∑

i ρiI(X ∧ Yi | l(X) = i)

≥
∑

i ρiH(Gi),

where the last inequality follows from the fact that in (X,Yi)|l(X) = i, X is a uniform vertex of V (Gi),
and Yi is an independent set containing X.

Now we proceed to the upper bound. For i = 1, . . . , k, let pi(x, yi) be the minimizing distribution in the
definition of H(Gi). Then we can define the following joint distribution on X,Y1, . . . , Yk:

p(x, y1, . . . , yk) =
∑
i

ρi · p1(y) · · · pk(yk) · pi(x | yi).

In words, we choose Y1, . . . , Yk independently according to the marginal distributions of p1, . . . , pk, then pick
a component i according to the distribution ρ1, ρ2, . . . , ρk and finally sample X from that component with
conditional distribution pi(x|yi). We can verify that for this choice, all the inequalities above hold with
equality:

• We choose the component in which to put X according to the weights ρi, and independently choose
the independent sets Y1, . . . , Yk. Thus I(l(X) ∧ Y1, . . . , Yk) = 0.

• Conditioned on l(X) = i Y1, . . . , Yi−1, Yi+1, . . . , Yk are independent of X,Yi. Thus,
I(X ∧ Y1, . . . , Yi−1, Yi+1, . . . Yk | l(X) = i, Yi) = 0.

• The last inequality is tight since conditioned on l(X) = i, the joint distribution X,Yi|l(X) = i is the
minimizing distribution for the graph entropy.
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