
CSE533: Information Theory in Computer Science October 13, 2010

Lecture 5
Lecturer: Anup Rao Scribe: Widad Machmouchi

In the previous lecture, we defined the entropy of a graph and derived some of its properties.
In particular, we showed:

Claim 1. For two graphs G1, G2, H(G1 ∪G2) ≤ H(G1) +H(G2).

and

Claim 2. If G1, . . . , Gk are the connected components of G, with Gi containing a ρi fraction of the vertices
of G, then H(G) =

∑k
i=1 ρi ·H(Gi).

We start with a quick puzzle:
Question: What is fewest number of bipartite graphs you need to cover the complete graph on n vertices?
Answer: dlog ne. The graph entropy of a bipartite graph is at most 1, and the graph entropy of the

complete graph is log n, which proves the lower bound. To see the upper bound, write every vertex in
its binary representation using dlog ne bits. Then the i’th bipartite graph is the complete bipartite graph
between vertices whose i’th bit is 1 and vertices whose i’th bit is 0.

Today, we show how to derive a lower bound for monotone formula size using graph entropy.

1 Monotone boolean formulae and functions

Given a set of input bits x1, . . . , xn, a boolean formula on the inputs is a rooted tree, where every node in
the tree corresponds to a boolean function of the inputs. The nodes are usually called gates. Each of the
leaf gates computes the function xi for some input bit i, or a constant function. There are three types of
non-leaf gates:

• An OR gate computes the OR (f ∨ g) of the functions computed by its two children (f, g).

• An AND gate computes the AND (f ∧ g) of the functions computed by its two children (f, g).

• A NOT gate computes the NOT (¬f) of the function computed by its lone child (f).

The entire formula computes the function computed by the gate at the root. Given a formula F , the
size of the formula is the number of gates in F . For example, F = (x1 ∧ (¬x2)) ∨ ((¬x1) ∧ x2) is a formula
computing the parity of the bits x1, x2. Its size is 9.

Given a boolean function f : {0, 1}n → {0, 1}, we can always view the function as a boolean function
f : 2[n] → {0, 1} on subsets of [n], by interpreting every element of {0, 1}n as a subset in the natural way.
We say that f is monotone if for all sets S ⊂ T ⊆ [n], f(S) ≤ f(T). In other words, increasing the size of
the set can only increase the value of f , or alternatively, replacing a 0 with a 1 in the input can only increase
f ’s value. Examples of monotone functions include OR, AND and the majority function.

Say that a formula is monotone if it does not have any NOT gates. It is easy to check that any monotone
formula must compute a monotone function. Given a monotone function f , we write sizem(f) for the size of
the smallest monotone formula computing f . A monotone f can always be computed by the depth 2 formula

∨
f(S)=1

(∧
i∈S

xi

)
,

proving that sizem(f) is always O(n · 2n).

5-1

2 Threshold functions

For every k ∈ {0, 1, . . . , n}, define the threshold function Thnk : 2[n] → {0, 1}:

Thnk (S) =

{
1 if |S| ≥ k,

0 else.

Thn1 is the OR function, Thnn is the AND function, and Thnn/2 is the majority function. It is easy to check
that sizem(Thnn) = sizem(Thn1) = 2n− 1, which is the size of the natural formulae for these functions. 2n− 1
gates are necessary since both OR and AND depend on all of the inputs, so the formula must have n − 1
internal gates just to touch all the input gates.

What about sizem(Thnk) and size(Thnk) for other values of k? Valiant [3] gave a clever probabilistic
construction that shows that sizem(Thnk) = O(n5.3), but it is not clear what the right value is.

3 A small formula for Thn2

In this lecture, we focus on the function Thn2 , where things already start to become interesting. It is easy to
see that sizem(Thn2) = O(n2): in fact this can be done with the depth two formula:

∨
|S|=2

(∧
i∈S

xi

)
.

A more careful divide and conquer based construction gives a smaller formula. Let x be the first dn/2e
bits of the input, and y be the remaining bn/2c bits. Let S = Sx ∪ Sy be the two parts of the inputs viewed
as sets. Then |S| ≥ 2 if and only if |Sx| ≥ 2, or |Sy| ≥ 2, or both Sx, Sy have at least one element. More
formally,

Thn2 (x, y) = (Th
dn/2e
2 (x) ∨ Th

bn/2c
2 (y)) ∨ (Th

dn/2e
1 (x) ∧ Th

bn/2c
1 (y)).

Since sizem(Thn1) = 2n − 1, we can recursively construct a formula for Thn2 of size Sn, with Sn satisfying
the recurrence Sn ≤ 2Sn−1 + O(n). The solution of the recurrence is Sn = O(n log n). Thus, sizem(Thn2) =
O(n log n). A more careful calculation shows that Sn ≤ (2n+ dlog ne+ 1)dlog ne.

One can do even better than this:

Exercise 1. Show that there is a monotone formula computing Thn2 of size 2ndlog ne − 1. (Hint: Try to
make the proof for Claim 6 tight.)

4 A lower bound for sizem(Th
n
2) using graph entropy

We give a lower bound that almost exactly matches the upper bound from Exercise 1. We shall prove

Theorem 3. sizem(Thn2) ≥ 2dn log ne − 1.

Note that the lower bound and upper bound are exactly the same when n is a power of 2. The theorem
(upto constant factors) was proved by Krichevskii [1]. The graph entropy based proof that we discuss here
was discovered by Newman, Ragde, and Wigderson [2].

Given any monotone f : 2[n] → {0, 1}, define:

(f)i = {S ⊆ [n], |S| = i s.t. f(S) = 1 and ∀T ⊂ S, f(T) = 0}.

The sets in ∪i(f)i are the witnesses (usually called min-terms) for f being 1 on any set. Namely f(W) = 1
exactly when W contains some set of ∪i(f)i. Consider (Thnk)j for all j, k. When j < k, this is just the empty
set, since Thnk evaluates to 0 on all sets of size less than k. When j = k, this consists of all sets of size k.

5-2

When j > k, it is again the empty set, since although Thnk (S) = 1 for sets S of size j, such an S always
contains a strict subset of size k.

Let F be the smallest monotone formula computing Thn2 . We shall prove that F must have at least
2dn log ne − 1 gates. Observe that (Thn2)2, contains all sets of size 2, yet if f = xi is a function computed
at a leaf, (f)2 is the empty set. For each gate in the formula computing the function f , let Gf denote the
graph on the vertex set [n] whose edges are (f)2. Then at the root of the formula, G(Thn2)

is the complete
graph, and at any leaf, Gxi is the empty graph. Thus, as we move up the formula and consider the graphs
Gf associated with the internal gates, the graphs must eventually turn into the complete graph. It is natural
to try to understand how many gates it takes to build the complete graph in this process, in order to prove
a lower bound.

Let us consider each of the two possible internal gates in the formula in turn.

4.1 OR gates

We claim that the graph of an OR gate is contained in the union of the graphs for its inputs:

Claim 4. If f = g ∨ h, then Gf ⊆ Gg ∪Gh.

Indeed, if Gf contains the edge e, then g(e) ∨ h(e) = 1. Without loss of generality assume g(e) = 1. For
every strict one element subset T ⊂ e, we must have that g(T) = 0, or else f(T) = 1 also, contradicting the
fact that e ∈ Gf . This proves that e ∈ Gg.

4.2 AND gates

AND gates are a little more tricky. Suppose f = g ∧ h. Life would be great if Gf ⊆ Gg ∪Gh, but this is not
the case, for example if e = {1, 2}, we have that e ∈ Gx1∧x2

, but e is not in Gx1
nor Gx2

.
In fact, this is the only potential problem. Suppose e = {i, j} ∈ Gf − (Gg ∪Gh). Consider the functions

f, g, h restricted to the sets in E = 2{i,j}, call them fE , gE , hE . Then we have that fE = xi ∧ xj = gE ∧ hE .
If one of gE or hE is 1, then the other must be equal to fE , which is not possible, since e ∈ Gf −Gg ∪Gh.
The only remaining option is gE = xi, hE = xj or gE = xj , hE = xi. Thus, e ∈ ((g)1 − (h)1)× ((h)1 − (g)1).
Define the graph Tg,h whose edges are exactly ((g)1 − (h)1)× ((h)1 − (g)1). We have just argued that

Claim 5. If f = g ∧ h, then Gf ⊆ Gg ∪Gh ∪ Tg,h.

4.3 A cost function based on graph entropy

Somehow the formula starts with empty graphs at the leaves, and is able to build the complete graph at the
root by taking unions as described above. While OR gates are simple to control, we saw that AND gates
contributed edges from the graph Tg,h. Notice that Tg,h is bipartite. This suggests that we should measure
the graph entropy of the graphs associated with the gates, since bipartite graphs have small graph entropy.

By Claim 1, if f = g ∨ h, H(Gf) ≤ H(Gg) + H(Gh). On the other hand, if f = g ∧ h, then H(Gf) ≤
H(Gg) + H(Gh) + H(Tg,h). Since Tg,h is bipartite, H(Tg,h) ≤ 1. Thus OR gates simply add up the
entropy of the underlying graphs, while AND gates may add an additional 1 to the graph entropy. Since
H(GThn2

) = log n and H(Gxi
) = 0, this proves the following claim:

Claim 6. Any monotone formula for Thn2 must have at least dlog ne AND gates.

Indeed, there is a formula of size 2ndlog ne − 1 that uses exactly dlog ne AND gates (see Exercise 1).
To get a lower bound on the formula size, we need a better bound on H(Tg,h). Since all the edges in Tg,h

are contained in the symmetric difference of (g)1 and (h)1, and the graph is bipartite, we can apply Claim

2 to show that H(Tg,h) ≤ |(g)1∪(h)1−(g)1∩(h)1|n .

Now consider the cost function µ(f) = H(Gf) + (f)1
n . At a leaf, µ(xi) = 1/n, and at the root µ(Thn2) =

log n. We shall prove that this cost function does add for every gate, which will show that F (the smallest

5-3

formula computing Thn2) has at least dn log ne leaf gates. Since F is the smallest formula, F cannot have
any gates computing a constant function — such a gate cannot be at the root, and if any non-root gate
computes the constant function, we can obtain a smaller formula computing Thn2 by simplifying f ∧ 1 = f ,
f ∧ 0 = 0, f ∨ 1 = 1, f ∨ 0 = f . In particular, if f is computed by a gate in F , it must be the case that
f(∅) = 0, or else f being monotone would imply that f = 1. This gives us the following claim:

Claim 7. If f is computed by any gate in F , (f)1 = {{i}|f({i}) = 1}

If f = g ∨ h, it is clear that (f)1 is equal to (g)1 ∪ (h)1 by Claim 7. Thus Claims 1 and 4 give

µ(f) = H(Gf) +
|(f)1|
n

≤ H(Gg) +H(Gh) +
|(g)1|+ |(h)1|

n
≤ µ(g) + µ(h)

On the other hand, if f = g ∧ h, it is clear from Claim 7 that (f)1 = (g)1 ∩ (h)1. Thus Claims 1 and 5
give

µ(f) = H(Gf) +
|(f)1|
n

≤ H(Gg) +H(Gh) +H(Tg,h) +
|(g)1 ∩ (h)1|

n

≤ H(Gg) +H(Gh) +
|(g)1 ∪ (h)1 − (g)1 ∩ (h)1|

n
+
|(g)1 ∩ (h)1|

n

= H(Gg) +H(Gh) +
|(g)1|+ |(h)1|

n
≤ µ(g) + µ(h)

These bounds imply that the number of leaf gates must be at least dn log ne, or µ would not reach log n
at the root. The total number of gates must be at least 2dn log ne − 1, since dn log ne − 1 gates are required
to connect all the leaf gates to the root.

References

[1] R. E. Krichevskii. Complexity of contact circuits realizing a function of logical algebra. Soviet Physics,
Dokladi 8, pages 770–772, 1964.

[2] Ilan Newman, Prabhakar Ragde, and Avi Wigderson. Perfect hashing, graph entropy, and circuit com-
plexity. In Structure in Complexity Theory Conference, pages 91–99, 1990.

[3] Leslie G. Valiant. Short monotone formulae for the majority function. Journal of Algorithms, 5(3):363–
366, 1984.

5-4

