
CSE533: Information Theory in Computer Science September 28, 2010

Lecture 6

Lecturer: Anup Rao Scribe: Lukas Svec

1 A lower bound for perfect hash functions

Today we shall use graph entropy to improve the obvious lower bound on good hash functions.

Definition 1 (k-perfect hash functions). Given a family of functions H = {h : [N] → [b]}, we say

that H is a k-perfect hash family, if ∀ S ⊂ [N], |S| = k, there exists h ∈ H such that h is injective

on S.

Such families are very useful in computer science. Imagine that [N] is the set of all possible
videos of a certain size (a huge set), and think of k as being a much smaller number: the total
number of videos we want to store in a database. Now suppose k − 1 videos have already been
stored. One way to check whether a new video is in the database or not is to compare the bits
of the new video with every stored video, which would be computationally expensive. If one has
access to a k-perfect hash family, we can instead have a different server maintaining a hash table
for each of the hash functions in the family, and each such server can check whether the new video
matches up with a stored video or not. The k-perfect property guarantees that some server in the
family will identify the video as being new. In addition, all of the computations can be done in
parallel.

Let t = |H| be the size of the k-perfect family. How small can t be?

Claim 2. t ≥ logN/ log b.

Proof This is an application of the pigeonhole principle. Suppose t < logN/ log b. Then bt < N ,
so two elements of [N] must be hashed in exactly the same way by every hash function. Thus, the
family is not even 2-perfect in this case.

Claim 3. If b ≥ 100k2, then there is a k-perfect hash function family of size t = O(k logN).

Proof Idea Pick t random functions and let them be in the family. Then for any fixed set of S
of k-elements, each function is injective on the with constant probability. By the Chernoff bound,
the probability that no function in the family is injective is at most exp(−Ω(t)). The total number
of such sets S is at most Nk, so by the union bound, the probability that any set does not get an
injective function is at most Nk exp(−Ω(t)), which can be made to be less than t for t as small as
in the claim.

The following theorem improves the bound given by the pigeonhole principle:

Theorem 4. t ≥
(

bk−1

b(b−1)···(b−k+2)

)

log(N−k+2)
log(b−k+2) .

6-1

The theorem was first proved my Fredman and Komlós [1]. The graph entropy based interpre-
tation of the proof that we discuss here is due to Körner [3]. Today we shall prove the theorem in
the case that b|N , though essentially the same proof works in the general setting.

Let G denote the following graph:

Vertices of G: {(D,x) : D ⊂ [N] with |D| = k − 2, x ∈ D − [N]}

Edges of G: {{(D,x1), (D,x2)} : x1 6= x2}

Complete Graphs with
n−k+2 vertices

D1 D
2

Figure 1: The graph G.

G consists of several connected components, one for every value of D, and each of these con-
nected components is a complete graph on N − k + 2 vertices. Thus, the graph entropy of each
component is log(N − k+2), and the graph entropy of their union is just a convex combination of
the graph entropy of each part, so it is also H(G) = log(N − k + 2).

D
no edges

1

(a) h is not injective on
D1

D

(b−k+2)−partite graphx1

x2

(b) h is not injective on D1

Figure 2: The structure of Gh.

Fix a k-perfect hash function family H. For every h ∈ H, define a subgraph Gh ⊂ G with the
following subset of edges:

Edges of Gh: {{(D,x1), (D,x2)} : h is injective on D ∪ {x1} ∪ {x2}}.

If D is such that h is not injective on D, then Gh has no edges in the component corresponding
toD. On the other hand, if h is injective onD, we can partition the vertices (D,x) of the component
corresponding to D into b− k + 3 sets depending on the value of h(x). For every i /∈ h(D), define
the set Ai = {(D,x) : h(x) = i}. The component corresponding to D is the (b−k+2)-partite graph

6-2

2
1

3

D2

Collides with D2

x

x
x

Figure 3: The regions in D2 are partitioned by h−1.

obtained by partitioning the vertices into the sets Ai. The graph entropy of each such component
is thus bounded by log(b− k + 2).

Further, the fact that H is perfect translates to

G =
⋃

h∈H

Gh.

This already gives us a lower bound, since H(G) ≤
∑

h∈H H(Gh), it must be the case that H(G) ≤
t log(b− k + 2), in other words, t ≥ log(N − k + 2)/ log(b− k + 2).

To get a better lower bound, we shall give a better upper bound on H(Gh). The fact that we
haven’t yet exploited is that many of the vertices of Gh are isolated vertices. A vertex (D,x) is
isolated in Gh exactly when h is not injective on D∪{x}. By the lemma about the graph entropy of
a union of connected components, we know that H(Gh) ≤ Pr[h is injective on D∪{x}] log(b−k+2),
where the probability is taken over a random vertex (D,x). This probability is exactly equal to
Pr[h is injective on S], for a random set S of size k−1. Recall that we are assuming here that b|N .

Claim 5. Pr[h is injective on S] is maximized when |h−1(1)| = |h−1(2)| = ... = |h−1(b)|.

Sketch of Proof

h (1)
h (2)
−1

−1

Suppose h−1(1) > h−1(2) + 1. Let x be an element with h(x) = 1, and let us see what happens
to PrS[h is injective on S] when we change the value of h(x) from 1 to 2. We can write

Pr[h is injective on S] = Pr[x ∈ S]·Pr[h is injective on S|x ∈ S]+Pr[x 6∈ S]·Pr[h is injective on S|x 6∈ S]

Observe that the second term in the sum is unaffected by changing the value of h(x), and the
first term can only increase. Thus, Pr[h is injective on S] is maximized when all preimages are of
the same size.

Next we bound the probability in the case that all preimages are the same size.

Claim 6. Pr[h is injective on S] ≤ b(b−1)...(b−k+2)
bk−1

.

6-3

N/b N/b N/b
. . .

b

Proof

By Claim 5, it suffices to prove the bound when all preimages of h are of size N/b.
We can think of the elements of [N] as partitioned into b buckets. We need to bound the

probability that a random subset of k− 1 elements gets split into k− 1 different buckets. The total
number of ways of picking k − 1 elements is

(N
k−1

)

. The number of ways of picking elements from

separate buckets is
(b
k−1

)

(N/b)k−1. Thus,

Pr[h is injective on S] ≤

(b
k−1

)

(N/b)k−1

(N
k−1

)

=
b(b− 1) · · · (b− k + 2)

bk−1
·

Nk−1

N(N − 1) · · · (N − k + 2)

≤
b(b− 1) · · · (b− k + 2)

bk−1

Thus, H(Gh) ≤
b(b−1)···(b−k+2)

bk−1
log(b− k + 2), proving the theorem.

2 A sorting algorithm

Suppose we are given n integers x1, . . . , xn. Then, by the pigeonhole principle we need to make at
least log(n!) = Θ(n log n) comparisons to sort them and rearrange them into ascending order, since
if we use fewer comparisons, two different permutations of the integers can give the same outcome
for every comparison, so we would not be able to distinguish the two. Indeed, we know of several
ways to sort using Θ(n log n) queries.

Recall that a partial order is a relation ≤ on the elements such that x ≤ x for all elements,
and x ≤ y ≤ z implies that x ≤ z. A total order is a partial order in which any two elements are
comparable. Every partial order can be completed to a total order.

Question: Given a partial order S on x1, ..., xn, how many queries are necessary to complete
the partial order to a total order?

Define e(S) to be the number of total orders consistent with S. Just as before, it is immediate
from the pigeonhole principle that at least log(e(S)) queries are necessary.

Kahn and Kim [2] gave a sorting algorithm matching this lower bound.

Theorem 7. There a polynomial time algorithm that given S and x1, . . . , xn, makes log(e(S))
queries to determine the total order of x1, . . . , xn.

6-4

Their algorithm uses graph entropy. Note that unlike the other examples we have seen, they
use graph entropy to get an algorithm, rather than a lower bound. Here we sketch the high level
outline of their algorithm.

Let GS denote the comparability graph of S, namely the graph whose vertices are x1, . . . , xn,
and edges are pairs of elements that are comparable in S. Thus, if S is a total order, GS is the
complete graph, and H(GS) = log n. On the other hand, if GS is the empty graph, then S is the
empty order.

Kahn and Kim proceed by proving two theorems about the graph GS . The first gives us an
estimate of distance between our graph GS and the complete graph

Theorem 8. There is a constant C such that

n(log n−H(Gs)) ≥ log(e(S)) ≥ Cn(log n−H(Gs)

The second theorem states that it is always possible to increase the entropy of the graph GS by
some factor c/n if one picks the right vertices x, y on the graph. Let S(x ≤ y) denote the partial
order obtained by extending S with the relation x ≤ y (and all its consequences).

Theorem 9. There is a constant c such that if S is not a total order, ∃ x, y s.t.

min{H(GS(x≤y),H(GS(y≤x)} ≥ H(GS) +
c

n

H(G) can be computed using a convex program, and there is an polynomial time algorithm that
can approximate its value up to a polynomially small error. The algorithm for sorting operates as
follows. In each step, the algorithm computes the left hand side of Theorem 9 for every pair x, y,
using the current partial order S, and compares the pair that maximizes this value. The query
must increase the graph entropy by c/n. After log(e(S))/c steps, the algorithm must reach a total
order by Theorem 8

3 Locally Decodable Codes

Here we sketch a beautiful lower bound for 2-query locally decodable codes, discovered by Alex
Samorodnitsky. Rather than give a formal definition, let us start with an example, the famous
Hadamard code.

Suppose we want to store an n bit string x ∈ F
n
2 , but we are afraid that some of the bits we

store may get corrupted. In the Hadamard code, we would store the value of 〈a, x〉 =
∑n

i=1 ai · xi
for every a ∈ F

n
2 . This, takes a lot of space — we are storing 2n bits instead of just n bits. The

advantage of this scheme is that it can tolerate many errors, and has a fast decoding algorithm.

3.1 Decoding xi

To decode a particular bit xi,

1. Pick a ∈ F
n
2 uniformly at random.

2. Query q1 = 〈a, x〉 and q2 = 〈a + ei, x〉, where ei = (0, ..., 0, 1, 0, ..., 0), the unit vector in the
i’th direction.

6-5

3. Output q1 + q2.

Claim 10. If at most 1% of the stored information is corrupted, we recover xi with probability at

least 98%.

Proof Since both a and a + ei are uniformly random vectors, the probability that either query
is corrupted is at most 2%. If neither is corrupted 〈a, x〉 + 〈a+ ei, x〉 = 〈a+ a+ ei, x〉 = xi.

This code is a 2-query code, since we only make two queries to recover xi. The code is linear,
since the encoding is a linear function of the input bits.

Theorem 11 (Samorodnitsky). Every linear 2-query locally decodable code must store 2Ω(n) bits.

Let us sketch the proof. Suppose the code encodes x into the vector 〈a1, x〉, 〈a2, x〉, . . . , 〈am, x〉.
It is no loss of generality to assume that the decoder succeeds in decoding xi only when it queries
the code at aj , ak such that aj+ak = ei. Indeed, if x is uniformly random and the span of aj , ak do
not contain ei, then the value of xi is independent of the queried values, so the queries are useless.

If the code is to tolerate a 1% fraction of errors, then it must be the case that there are at least
m/200 pairs of bits that can be queried to recover xi. If not, the value of xi can be destroyed by
randomly corrupting at most m/100 of the stored bits.

Recall that the hypercube is the graph whose vertices are F
n
2 , and two vertices are adjacent if

and only if they disagree in exactly one coordinate. We have just argued that if any linear 2-query
code uses only m bits of storage, then there must be a set S = {a1, . . . , am} of vertices in the
hypercube, such that for every i, S contains at least m/200 edges in direction i. The lower bound
will be proved by showing the following claim.

Claim 12. For every subset S of vertices in the hypercube,

of edges in S ≤
|S| log(|S|)

2

The bound is tight when S is a subcube.
Given the claim, the fact that S has m/200 edges in each direction implies that

nm

200
≤

m logm

2
⇒ m ≥ 2n/100.

The proof of the claim goes by a slick entropy argument.
Proof Let X1, ...,Xn be a uniformly random vertex in S.

Then observe that for every x2, . . . , xn in the support of X1, . . . ,Xn, X1|x2, . . . , xn is a uniform
bit if there is an edge in direction 1 at x2, . . . , xn, and is constant if not.

Thus,

H(X1|x2, . . . , xn) =

{

1 if there is an edge in direction 1 at x2, . . . , xn, and

0 else.

Therefore, the number of edges in direction i is exactly |S|H(Xi|X−i)/2, where X−i denotes
all coordinate except for the i’th one. The factor of 2 comes from the fact that every edge gets a
probability of 2/|S| in the expectation.

6-6

This allows us to bound the total number of edges by

(|S|/2)

n
∑

i=1

H(Xi|X−i)

≤ (|S|/2)

n
∑

i=1

H(Xi|X1, . . . ,Xi−1)

= (|S|/2)H(X1, . . . ,Xn)

=
|S| log |S|

2

References

[1] Michael L. Fredman and János Komlós. On the size of separating systems and families of perfect
hash functions. SIAM Journal on Algebraic and Discrete Methods, 5(1):61–68, March 1984.

[2] Jeff Kahn and Jeong Han Kim. Entropy and sorting. Journal of Computer and System Sciences,
51(3):390–399, December 1995.

[3] J. Körner. Fredman-Komlós bounds and information theory. SIJADM: SIAM Journal on

Algebraic and Discrete Methods, 7, 1986.

6-7

