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1 Communication Complexity

Communication complexity studies how much information two or more parties must exchange in
order to compute a function when each party only has partial knowledge of the input. In these
two lectures, we use some of the tools we have learned to prove a lower bound on the randomized
communication complexity of set disjointness, and show that multiple copies of a function must
require more randomized communication than a single copy.

Communication protocols are a useful abstraction that can be applied to almost any model of
computation. For example, a circuit with W wires naturally defines a communication protocol as
follows: partition the gates and inputs of the circuit into two parts, with one part containing half
the inputs and the other part containing the other half. Then the two parts of the circuit can be
thought of as two communicating parties that send at most W messages in order to compute the
output of the circuit from the inputs that they know. Thus, one can hope to give bounds on the
value of W by bounding how much communication is needed to compute the function. Similarly,
consider an algorithm that uses a small amount of memory to process a large stream of input data.
Such an algorithm gives a communication protocol for the same computation where one party knows
the first half of the inputs, the other knows the second half, and the amount of communication is
equal to the memory used after reading the first half of the input. This connection can be used to
give lower bounds on the memory usage of streaming computations.

Let us start by formally defining communication protocols (see [5] for more details). Two parties
Alice and Bob wish to compute some function f : X × Y → Z. Alice receives x ∈ X , Bob receives
y ∈ Y and they send messages back and forth to each other until both parties know f(x, y). We
are only interested in the number of bits exchanged between the two, thus we will allow Alice and
Bob to have unbounded computational power. At any point, the protocol determines the active
party and what he/she should send, which only depends on his/her input, the past messages, and
possibly, any randomness used.

1.1 Deterministic Communication Protocols

A (deterministic) protocol π over domain X ×Y with range Z is a binary tree where each internal
node v is labeled either by a function av : X → {0, 1} or by a function bv : Y → {0, 1}, and each
leaf is labeled with an element z ∈ Z. The value of the protocol π on input (x, y), is the label of the
leaf reached by starting from the root, and walking on the tree. At each internal node v labeled
by av, the walk goes left if av(x) = 0 and right if av(x) = 1, and at each internal node labeled by
bv the walk goes left if bv(y) = 0 and right if bv(y) = 1. We say that π computes f if its value on
input (x, y) is f(x, y) for all (x, y) ∈ X × Y.

If the protocol reaches a node v labeled by a function av, it is Alice’s turn to speak and the bit
she should send is av(x). Similarly, if v is labeled by a function bv then it’s Bob’s turn to speak

8 and 9 - Lower Bounds in Communication Complexity-1



and the bit he should send is bv(y). We write π(x, y) to denote the concatenation of all messages
transmitted in this way.

The communication complexity of π is the depth of the deepest leaf in π. The deterministic
communication complexity of f , denoted by D(f), is the minimum communication complexity of
π, over all protocols π that compute f .

1.2 Randomized Communication Protocols

Here Alice and Bob are equipped with the power of randomization. In a public coin randomized
protocol π, Alice and Bob have access to the same random string r, and each fixed r determines
a deterministic protocol πr, and on input x, y, Alice and Bob together sample r and execute the
protocol πr. We write π(x, y) to denote the messages exchanged during the protocol.

We say that π computes the function f with if for all (x, y), π outputs the correct value f(x, y)
with probability at least 2/3, where the probability is taken over r. The communication complexity
of the protocol is the largest communication complexity of all the deterministic protocols involved.
The public coin randomized complexity of a function f , denoted by R(f), is defined as the minimum
communication complexity of a protocol P that computes f .

In a private coin randomized protocol Alice and Bob are allowed to sampled random strings
r1, r2 privately, and then run a deterministic protocol on the inputs (x, r1), (y, r2). As above, the
protocol computes f if for every x, y, it computes f(x, y) with probability at least 2/3, over the
choice of r1, r2. The communication complexity is simply the communication complexity of π.

We note that the number 2/3 above (the success probability) can be made an arbitrary large
constant just by running the protocol several times and taking the majority of the outcomes, so it
is not so important what number we use here, as long as it is larger than 1/2. Every private coin
protocol can be simulated by a public coin protocol with no increase in the communication, simply
by setting r = r1, r2 to be the public randomness.

1.3 Average Case Communication Complexity

We shall also consider the model where there is a distribution µ on the inputs X,Y . In this case,
we say that a protocol computes f if it outputs the correct answer with probability at least 2/3,
where the probability is over the sample of X,Y (in addition to any randomness used). We write
Dµ(f) to denote the communication complexity of computing f in this model.

It is an easy consequence of von Neumann’s minimax theorem to prove Yao’s minimax theorem:

Theorem 1. R(f) = maxµD
µ(f).

The trivial direction is that R(f) ≥ maxµD
µ(f). The other direction can be proved by consid-

ering the zero-sum game where one player picks a distribution on inputs, and the other player picks
a protocol of communication complexity at most t, and the payoff is the error encountered by the
players. The minimax theorem for zero-sum games can then be used to prove the above theorem
(we leave the rest of the proof as an exercise).

We will use this method to prove Theorem 2.
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2 Communication Complexity of Set Disjointness

We are interested in the following function DIST : {0, 1}n×{0, 1}n → {0, 1} . DIST takes two inputs
x, y ∈ {0, 1}n and viewing them as the indicator vectors of two subsets x, y ⊆ [n], outputs whether
those sets are disjoint or not. The trivial way to compute DIST (or for that matter, any function)
takes n + 1 bits. Kalyanasundaram and Schnitger showed that this is the best one can do, upto
constant factors:

Theorem 2 (Kalyanasundaram and Schnitger [4]). R(DIST) = Ω(n)

The theorem was first proved by Kalyanasundaram and Schnitger. Before their work, the
disjointness function stood out as a function that did not succumb to several standard methods
of proving lower bounds in communication complexity. This theorem is now the starting point for
many other lower bound results in complexity theory. The proof of the theorem we present here
uses techniques refined and developed in a sequence of papers [8, 7, 1, 3, 6, 2].

To prove the theorem, we shall define a distribution µ over the inputs such that Dµ(DIST) =
Ω(n). Let µ0 be the distribution that is uniform on disjoint sets. Thus, in µ0, (Xi, Yi) is equally
likely to be (0, 0), (0, 1) or (1, 0), and the n pairs of variables are independent of each other. Let
µ1 be the distribution that is uniform over sets which intersect in exactly one coordinate. Thus,
for a random coordinate j, (Xj , Yj) = (1, 1), and the rest of the coordinates are again independent
and equally likely to be (0, 0), (0, 1) or (1, 0). Set µ = (µ0 + µ1)/2 to be the convex combination of
these two distributions. µ produces disjoint sets with probability exactly 1/2.

Recall that the statistical distance between two distributions α, β sampling from a set U is
defined to be (1/2)

∑
x∈U |α(x) − β(x)| = maxT⊂U (α(T ) − β(T )), namely the largest probability

that a set T has of distinguishing one distribution from the other. We write α
ε
≈ β to assert that

α is ε-close to β in statistical distance.
Given any deterministic protocol π, we write πµ, πµ0 and πµ1 to denote the distributions of the

messages in π when the inputs are sampled according to µ, µ0, µ1. We shall prove that any protocol
with small communication cannot tell µ0 apart from µ1:

Theorem 3. If the communication complexity of π is εn, then πµ0
O(ε1/4)
≈ πµ1.

Theorem 3 implies Theorem 2, since it shows that for any protocol π with communication
complexity εn (for small enough ε), π cannot compute DIST correctly on the distribution µ, since
the probability that it concludes that the sets are intersecting is roughly the same whether the
input comes from µ0 or µ1.

Intuitively the theorem should hold because the parties do not know where the potential inter-
section is, and so do not know which coordinates to reveal information about. On average, they can
only spend ε bits of communication per coordinate, so they must be ignoring a lot of coordinates,
and whenever the intersection lies in one of the coordinates that they do not pay attention to, the
messages in the protocol will carry no information about whether the inputs are intersecting or
not. Actually turning this intuition into a proof is tricky. One immediate complication is that in
µ all coordinates are not independent of each other, so transmitting information about one coor-
dinate does reveal information about the other coordinates. On the other hand µ0 is a product
distribution, so let us try to start by applying our intuition to µ0.
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First Attempt Let X,Y be sampled according to µ0. Let π(X,Y ) denote the messages trans-
mitted in π for inputs X,Y . Recall that

Lemma 4. If A and B are independent then

I(AB ∧ C) ≥ I(A ∧ C) + I(B ∧ C).

Since each of the coordinates in the inputs are independent of each other,

εn ≥ I
(
X1, X2 . . . Xn

Y1, Y2 . . . Yn
∧ π(X,Y )

)
≥

n∑
i=1

I

(
Xi

Yi
∧ π(X,Y )

)
(1)

Thus, the messages only have ε information about the average coordinate, at least under the
distribution µ0. We also have the following lemma (that we do not prove here):

Lemma 5. D(p||q) ≥ |p− q|2

Note that there should not be any relationship in the reverse direction. If q(x) = 0 and p(x) 6= 0
for some x ∈ X then D(p||q) is ∞ while |p− q| is always at most 1.

Lemma 5 allows us to show that if two random variables have small mutual information, then
they are statistically close to being independent:

Lemma 6. Let A and B be two random variables with distribution p(a, b), then

I(A ∧B) ≥ E
a

[
|p(b|a)− p(b)|2

]
≥
(
E
a

[|p(b|a)− p(b)|]
)2

.

Proof The second inequality follows from convexity. Here we prove the first inequality

I(A ∧B) = D(p(a, b)||p(a)p(b))

=
∑
a,b

p(a, b) log
p(a, b)

p(a)p(b)

=
∑
a

p(a)D(p(b|a)||p(b))

≥
∑
a

p(a)|p(b|a)− b(b)|2

The last inequality implies the lemma.

Consider the following protocol γ that takes as input bits a, b:

Protocol γ(a, b)

1. The parties publicly sample j ∈ [n] uniformly at random.

2. For i 6= j, the parties publicly sample (Xi, Yi) to be uniformly one of (0, 0), (1, 0), (0, 1).

3. They set Xj = a, Yj = b.

4. The parties execute π(X,Y ).
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Let us write γ(a, b) to denote the distribution of messages exchanged in γ on input a, b. Observe
that if A,B are uniformly set to be bits not equal to (1, 1), γ(A,B) has the same distribution as πµ0 .
On the other hand, γ(1, 1) has the same distribution as πµ1 . By Equation (1), I(AB ∧ π(X,Y )) ≤
ε, so by Lemma 6, we can argue that the distribution of γ(A,B) is essentially independent of
(A,B): EA,B [|p(π(x, y)|ab)− p(π(x, y))|] ≤

√
ε. Does this imply that γ(1, 1) has roughly the same

distribution as γ(A,B)? One might hope that the following type of conjecture is true:

Conjecture 7. If EA,B [|p(π(x, y)|ab)− p(π(x, y))|] is small, then |p(π(x, y)|a=1, b=1)−p(π(x, y))|
must also be small.

Indeed the conjecture is true when γ is forced to be a deterministic protocol — if γ(0, 0) =
γ(0, 1) = γ(1, 0), the first bit of γ(1, 1) is the same as the first bit of γ(1, 0) or the first bit of γ(0, 1)
(which are both the same), depending on who transmits the first bit. Similarly, the second bit must
be the same, and so on: the entire communication of γ(1, 1) must be the same as in the other cases.

However, the conjecture is not true for general randomized protocols. Consider the following
protocol: the parties publicly sample a bit r, and the first party transmits the parity a⊕ r to the
second party. The second party then transmits a ∧ b. In this example, γ(0, 0) = γ(1, 0) = γ(0, 1),
yet γ(1, 1) can be distinguished from the others with probability 1. The example shows that the
public randomness can allow the parties to communicate even though this communication is not
visible in the messages alone. We cannot (yet) rule out that this kind of thing happens in the γ we
defined above. Xi, Yi need to be correlated, so they may also be providing a secret communication
channel when π is executed.

Still, one can show that the conjecture is true if γ is a private coin protocol:

Lemma 8. If γ is a private coin protocol taking bits a, b as inputs, and γ(0, 1)
ε
≈ γ(1, 0), then

γ(0, 0)
O(
√
ε)
≈ γ(1, 1).

The proof is based on the Hellinger distance between two distributions: H(p, q) =
√

1−
∑

x

√
p(x)q(x).

The following lemmas (which we do not prove here) describe the relationship the Hellinger distance
and the statistical distance:

Lemma 9.
√

2H(p, q) ≥ |p− q| ≥ H2(p, q)

Proof of Lemma 8 We claim that H(γ(1, 1), γ(0, 0)) = H(γ(1, 0), γ(0, 1)). The proof is then
immediate by applying Lemma 9.

The proof of the claim is very similar to the case when γ was deterministic.
Given any fixed sequence of messages m = m1, . . . ,mk, if the first party transmits the first bit in

γ, then γ(1, 1)(m1) = γ(1, 0)(m1), and γ(0, 0)(m1) = γ(0, 1)(m1). If the second party speaks first,
γ(1, 1)(m1) = γ(0, 1)(m1), and γ(0, 0)(m1) = γ(1, 0)(m1). In either case, γ(1, 1)(m1) ·γ(0, 0)(m1) =
γ(1, 0)(m1) · γ(0, 1)(m1). Proceeding inductively, we can show that

γ(1, 1)(m) · γ(0, 0)(m) = γ(1, 0)(m) · γ(0, 1)(m),

which proves that H(γ(1, 1), γ(0, 0)) = H(γ(1, 0), γ(0, 1)).

Given Lemma 8, our strategy is going to be to try and break the dependence between X,Y to
get the contradiction we need. To do this, we shall introduce some additional random variables.
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Let V = V1, V2, . . . , Vn be uniformly chosen bits. Define

Ti =

{
Xi Vi = 0
Yi else

W = W1, . . . ,Wn =

(
T1T2 . . . Tn
V1V2 . . . Vn

)
We write W−i to denote all coordinates of W except for the i’th one.

Then, we can bound

εn ≥ I(XY ∧ π | W )

≥
n∑
i=1

I(XiYi ∧ π | W )

⇒ ε ≥ (1/n)
n∑
i=1

E
W−i

[(I(XiYi ∧ π | W−iXi) + I(XiYi ∧ π | W−iYi)) /2] (2)

In particular, Equation 6 implies that

2ε ≥ (1/n)
n∑
i=1

E
W−i

[I(XiYi ∧ π | W−iYi)]

Then by Lemma 6, we get

2ε ≥ (1/n)

n∑
i=1

E
W−i

[
E
Yi,π

[
|p(xiyi|πW−iYi)− p(xiyi|W−iYi)|2

]]

⇒ 2ε ≥

(
(1/n)

n∑
i=1

E
W−i,Yi,π

[|p(xiyi|πW−iYi)− p(xiyi|W−i, Yi)|]

)2

,

where the last inequality follows from the convexity of the square function.
In other words, we have proved that for an average coordinate, the distribution of Xi, Yi is

essentially independent of the messages π. Let i be a uniformly random coordinate. Then we have
showed that:

p(ixiyiw−iπ)

√
2ε
≈ p(iyiw−iπ) · p(xi|iyiw−i)

= p(iyiw−i) · p(π|iyiw−i) · p(xi|iyiw−i)

⇒ p(ixiyiw−iπ)

√
2ε
≈ p(ixiyiw−i) · p(π|iyiw−i) (3)

Now consider the following protocol γ:
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Protocol γ(a, b)

1. The parties publicly sample i ∈ [n] uniformly at random.

2. The parties publicly sample W−i.

3. They set Xi = a, Yi = b.

4. They each privately sample the rest of X, Y conditioned on the inputs that they already
sampled.

5. The parties execute π(X,Y ).

As before, let A,B be uniform bits that are not both 1. Then by Equation 3,

p(iabw−iγ)

√
2ε
≈ p(iabw−i) · p(γ|ibw−i)

In particular, since Pr[(A,B) = (0, 0)] = 1/3, we get

p(iw−iγ(0, 0))
3
√
2ε
≈ p(iw−i) · p(γ|iw−i, b=0)

Repeating the same argument shows that

p(iw−iγ(1, 0))
3
√
2ε
≈ p(iw−i) · p(γ|iw−i, b=0)

We can conclude that

p(iw−iγ(1, 0))
6
√
2ε
≈ p(iw−iγ(0, 0))

6
√
2ε
≈ p(iw−iγ(0, 1)) (4)

Note that the messages in γ(1, 1) are distributed exactly as in πµ1 , and γ(A,B) is distributed
exactly as in πµ0 , which by Equation 4 is close to each of γ(1, 0), γ(0, 0), γ(0, 1).

By Lemma 9, these equations (together with the convexity of the square function, imply that

|γ(1, 1)− γ(0, 0)|2

≤
(

E
i,W−i

[|p(γ(1, 1)|iW−i)− p(γ(0, 0)|iW−i)|]
)2

≤ E
i,W−i

[
|p(γ(1, 1)|iW−i)− p(γ(0, 0)|iW−i)|2

]
≤ O

(
E

i,W−i

[|p(γ(1, 0)|iW−i)− p(γ(0, 1)|iW−i)|]
)

≤ O(
√
ε)

This proves Theorem 3.
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3 Direct Sums and Protocol Compression

Given a function f(x, y), define

fn
(
X1X2 . . . Xn

Y1Y2 . . . Yn

)
= f(X1, Y1)f(X2, Y2) . . . f(Xn, Yn),

namely the function that outputs the concatenation of the outputs from each f .
It is easy to see that log(n) · n · R(f) ≥ R(fn) — to compute n copies, we can use the best

protocol for computing one copy, n times. The log term is needed to reduce the error in each copy
to guarantee that all the answers are correct with probability 1 − O(1/n). Can we lower bound
R(fn) by n ·R(f)? It turns out that some kind of relationship in the other direction is true, as was
proved by Barak, Braverman, Chen and Rao:

Theorem 10 ([2]).

R(fn) ≥ Ω

( √
n ·R(f)

log(R(fn))

)
To prove the theorem, it suffices to prove a distributional version. Let µn denote the product

distribution obtained by taking n independent copies of the distribution µ. Then,

Theorem 11 ([2]).

Dµn(fn) ≥ Ω

( √
n ·Dµ(f)

log(Dµn(fn))

)
Theorem 10 follows from Theorem 11 — by Yao’s min-max theorem, there is a distribution

µ for which Dµ(f) = R(f), then by Theorem 11, Dµn(fn) ≥ Ω
( √

n·R(f)
log(R(fn))

)
, which implies that

R(fn) ≥ Ω
( √

n·R(f)
log(R(fn))

)
.

Theorem 11 is proved is by reduction. We start with a protocol realizing Dµn(f), and use it to
get a protocol with low communication complexity (O(Dµn(fn) · log(Dµn(f))/

√
n)) that computes

f over inputs drawn from µ. This would prove that Dµn(f) · log(Dµn(f))/
√
n ≥ Ω(Dµ(f)) as

required.

First Attempt Let π be a protocol realizing Dµn(fn), and let

Xn

Y n =
X1

Y1

X2

Y2
· · · Xn

Yn

be sampled according to µn. Then, since each coordinate is independent, we have

Dµn(fn) ≥ I(XnY n ∧ π) ≥
n∑
i=1

I

(
Xi

Yi
∧ π
)

(5)

Thus, the average coordinate has only Dµn(fn)/n information about the messages in π. Con-
sider the following protocol for f :
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Protocol γ(x, y) :

1. Publicly sample a coordinate i ∈ [n] uniformly.

2. For j 6= i, publicly sample Xj , Yj according to µ.

3. Set (Xi, Yi) = (x, y).

4. Run π.

If X,Y are distributed according to µ, note that γ(X,Y ) is distributed exactly according to
π(Xn, Y n). Thus, I(XY ∧ γ) ≤ Dµn(fn)/n. One might hope that we can now try to compress
the communication in γ so that the total length of messages in γ is close to the information in
them. Unfortunately, this is an impossible task! The counterexample is the same as before, namely
the public randomness can be used to communicate secretly. Consider the following protocol, that
operates on n-bit strings a, b:

Protocol γ′(a, b) :

1. Publicly sample a random n-bit string r.

2. The first party transmits the bitwise parity of her input with r to the second party.

3. the second party transmits f(a, b).

Call the first message of the protocol M1 and the second M2. Then observe that M1 has no
information about the inputs. Thus for any distribution on inputs, I(AB ∧ γ′) = I(AB ∧M1) +
I(AB ∧M2|M1) ≤ 1. And yet this protocol computes f . Thus, the mutual information between
the messages and the inputs is not a good measure of how much information the protocol reveals.

As in the proof of the lower bound for the disjointness function, the fix is to try and break
the dependence with the public randomness. Define V = V1, V2, . . . , Vn be uniformly chosen bits.
Define

Ti =

{
Xi Vi = 0
Yi else

W = W1, . . . ,Wn =

(
T1T2 . . . Tn
V1V2 . . . Vn

)
We write W−i to denote all coordinates of W except for the i’th one.

We conclude that

Dµn(f) ≥ I(XnY n ∧ π | W )

≥
n∑
i=1

I(XiYi ∧ π | W )

⇒ Dµn(f)/n ≥ (1/n)

n∑
i=1

E
W−i

[(I(XiYi ∧ π | W−iXi) + I(XiYi ∧ π | W−iYi)) /2] (6)

Then consider the following protocol for computing f :
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Protocol γ(x, y) :

1. Publicly sample a coordinate i ∈ [n] uniformly.

2. Publicly sample W−i according.

3. Set (Xi, Yi) = (x, y).

4. Privately sample Xn, Y n conditioned on all the publicly sampled variables.

5. Run π.

Then we have argued that in γ, if R denotes the public randomness, we have that 2Dµn(f)/n ≥
I(XY ∧ γ|RY ) + I(XY ∧ γ|RX). Most of the work in [2] then goes into showing that any protocol
with small information in this sense can be simulated with small communication. Intuitively the
measure of information that’s being bounded here is the amount of information that the each party
learns about the other parties input, based on everything that they see (Note that I(XY ∧γ|RY ) =
I(X ∧ γR|Y )).

They prove:

Theorem 12 ([2]). If π is a protocol on inputs XY with communication C, then π can be simulated
with expected communication logC ·

√
C · (I(XY ∧ π|RX) + I(XY ∧ π|RY )).

Applying the compression to the protocol γ above gives a protocol for f with communication
logDµn(f) ·

√
Dµn(f) ·Dµn(f)/n = Dµn(f) · logDµn(f)/

√
n.
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