## CSE599s: Extremal Combinatorics

November 5, 2011

## Homework 2

Anup Rao
Due: November 16, 2011

1. Recall that a star of size $k$ is a collection of $k$ edges incident to the same vertex. Show that any graph with $2(k-1)^{2}+1$ edges contains a matching of size $k$ or a star of size $k$.
2. Given a point in $\mathbb{R}^{3}$, its projection on the $x y$-plane is the point you obtain by dropping the $z$ coordinate. Similarly define the projection to the $y z, z x$ planes. Show that given a set of $n$ points in $\mathbb{R}^{3}$, one of the projections of this set to the $x y, y z$ or $z x$ planes must have size at least $n^{2 / 3}$.
3. Given any set of vertices $T$ in a graph, let $\Gamma(T)$ denote the set of neighbors of $T$. Show that the vertices of a graph can be partitioned such that each part is spanned by a single edge or a simple cycle if and only if for every independent set $T,|\Gamma(T)| \geq|T|$.
4. Let $\mathcal{F}$ be a family of sets, and $A, B$ be sets such that every member of the family has a non-empty intersection with each of $A, B$. Further, suppose that no set that is smaller than $A$ has this property. Let $G$ be the bipartite graph with bipartition $A, B$ such that $(a, b)$ is an edge if and only if there is a set $S \in \mathcal{F}$ such that $a \in S, b \in S$. Show that $G$ contains a matching that touches every element of $A$.
5. Suppose you have a family of sets $\mathcal{F}$ in an $n$ element universe such that if $A, C \in \mathcal{F}$ and $A \subset B \subset C$, then $B \in \mathcal{F}$. Prove that $\sum_{A \in \mathcal{F}}(-1)^{|A|} \leq\binom{ n}{\lfloor n / 2\rfloor}$.
6. Let $\mathcal{F}$ be a finite collection of disjoint subsets of $\mathbb{R}^{d}$, such that every set in $\mathcal{F}$ has volume at least 1 . Show that there is a way to assign every set $A \in \mathcal{F}$ to a distinct point $x_{A} \in \mathbb{Z}^{d}$ (with integer coordinates), so that $x_{A}$ is at most $\sqrt{d}$ away from $A$ in Euclidean distance.
