CSE599s: Extremal Combinatorics	November 5, 2011
Homework 2	
Anup Rao	Due: November 16. 2011

- 1. Recall that a *star* of size k is a collection of k edges incident to the same vertex. Show that any graph with $2(k-1)^2 + 1$ edges contains a matching of size k or a star of size k.
- 2. Given a point in \mathbb{R}^3 , its projection on the *xy*-plane is the point you obtain by dropping the *z* coordinate. Similarly define the projection to the *yz*, *zx* planes. Show that given a set of *n* points in \mathbb{R}^3 , one of the projections of this set to the *xy*, *yz* or *zx* planes must have size at least $n^{2/3}$.
- 3. Given any set of vertices T in a graph, let $\Gamma(T)$ denote the set of neighbors of T. Show that the vertices of a graph can be partitioned such that each part is spanned by a single edge or a simple cycle if and only if for every independent set T, $|\Gamma(T)| \ge |T|$.
- 4. Let \mathcal{F} be a family of sets, and A, B be sets such that every member of the family has a non-empty intersection with each of A, B. Further, suppose that no set that is smaller than A has this property. Let G be the bipartite graph with bipartition A, B such that (a, b) is an edge if and only if there is a set $S \in \mathcal{F}$ such that $a \in S, b \in S$. Show that G contains a matching that touches every element of A.
- 5. Suppose you have a family of sets \mathcal{F} in an *n* element universe such that if $A, C \in \mathcal{F}$ and $A \subset B \subset C$, then $B \in \mathcal{F}$. Prove that $\sum_{A \in \mathcal{F}} (-1)^{|A|} \leq {n \choose |n/2|}$.
- 6. Let \mathcal{F} be a finite collection of disjoint subsets of \mathbb{R}^d , such that every set in \mathcal{F} has volume at least 1. Show that there is a way to assign every set $A \in \mathcal{F}$ to a distinct point $x_A \in \mathbb{Z}^d$ (with integer coordinates), so that x_A is at most \sqrt{d} away from A in Euclidean distance.