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Lecture 1 Review of Some Basics

Lecturer: Anup Rao

1 Refresher of Basic Facts

The number of subsets of [n] = 1,2,...,n of size k is (Z) = ﬁ'_k),

Theorem 1 (Binomial Theorem). (z +y)" = > 7, (})z'y" "

i

Proof There are exactly (?) ways to get the monomial ziy"~*. B

Proposition 2. If 0 < k <mn, (Z) = (Zj) + (nzl)

Proof Idea The set of size k either contains n or not. H

Some estimates:
Proposition 3. Forn >k >0, (%)k > (Z) > (%)k

Proof (}) =1 %=t... 2= > (n/k)*, since each of the k ratios in the product is at at least
n/k. For the upper bound, observe that Taylor expansion gives e/ = 1+t +t2/2! + ... > 1+t
Thus (/™) > (1+k/n)" = 31", (")(k/n)" by the binomial theorem. Considering just the k’th

term, we get ¥ > (7)(k/n)*.
An entropy based bound:

Proposition 4. () = %, where H(a) = alog(l/a) + (1 — a)log(1/(1 — «)) is the

binary entropy function.

The proof is not pretty, but the intuition is that picking a random set of size k is similar to
picking a random set where each element is included independently with probability k/n.
Selection with repetitions:

n+r—l) ]

Proposition 5. The number of non-negative integer solutions to x1+xo+ ...+ T, =71 18 ( 1

Proof For every choice of n — 1 elements S of [n 4 r — 1], we obtain such a solution. z; is the
number of elements less than the first element of S, x5 is the number of elements between the first
two elements of S and so on. B

27l represents the power set of [n], and ([Z}) represents the set of sets of size k. A graph
G = (V =[n], E) is specified by a family of sets of size 2, E C ([g}).

Proposition 6. (}) = (g) +k(n—k)+ ("5'“)
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Proof Idea Count the edges in the complete graph by counting the number of edges inside a
set S of k vertices, the number outside, and the number that cross. B

Proposition 7 (Little Fermat). For any prime p, a? = a mod p.

Proof First note that (a +1)? = Y% ; (¥)a’ by the binomial theorem. However, (¥) = Izgf__ll))

is divisible by p when 0 < i < p. Therefore (a + 1) = a? +1 mod p. The proof is then completed
by induction on a. B

Given a family of sets F C 2", let d(z) denote the number of sets containing .
Proposition 8 (Double counting). »_,cp,; d(x) = > 4c 7 4]

Proof Consider the bipartite graph where the left vertices are [n] and the right vertices are F,
with an edge (z,S) exactly when x € S. The left hand side is the number of edges in the graph
counted from the left. The right hand side is the number of edges counted from the right. B

2 The Chernoff-Hoeffding Bound

Here we give a proof of the Chernoff bound from [1]. The proof is simple, and applies in a variety
of settings where true independence is not available.
Let Xi,...,X,, be independent binary random variables such that

X 1 with probability p
1o with probability 1 — p

Then we shall prove:
Theorem 9. Pr[} . X; > pn(l +¢)] < 9—e?pn/4

Proof Consider the following mental experiment. We sample the X;’s, and if at least k = pn(1+e€)
of the variables turn out to be 1, we pick a uniformly random subset S C [n] of t = epn/2 of the
coordinates that are 1, and blame S.

The probability that any fixed set T C [n] is blamed is at most

L
k
()

Note that in general there can be more than k coordinates that are 1, in which case the odds
that 7" will be picked can only be smaller than 1/ (’;)

Pr[X; = 1,Vi € T] - Pr[T is blamed|X; = 1,Vi € T] <
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Pr[); Xi > pn(1+¢)] is the same as the probability that any set is blamed, which by the union
bound is at most

pr () ptenl-(B—t)-t!
*) (n—1t)!-k!-t!

1 epn/2
- (1 + e/2> '

Using the fact that 2* <1+ x for = € [0, 1], we get that this probability is at most 2-€'p/4,
|

Remark For the above proof to work, it is sufficient to have that the probability of seeing only
ones in a fixed set T" of ¢ coordinates is exponentially small in ¢. This is a condition that can often
be satisfied even if the variables are not truly independent.
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