Lecture 1 Review of Some Basics

Lecturer: Anup Rao

1 Refresher of Basic Facts

The number of subsets of $[n]=1,2, \ldots, n$ of size k is $\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}$.
Theorem 1 (Binomial Theorem). $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$.
Proof There are exactly $\binom{n}{i}$ ways to get the monomial $x^{i} y^{n-i}$.

Proposition 2. If $0<k<n$, $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$.
Proof Idea The set of size k either contains n or not.
Some estimates:
Proposition 3. For $n \geq k>0,\left(\frac{e n}{k}\right)^{k} \geq\binom{ n}{k} \geq\left(\frac{n}{k}\right)^{k}$.
Proof $\binom{n}{k}=\frac{n}{k} \cdot \frac{n-1}{k-1} \ldots \frac{n-k+1}{1} \geq(n / k)^{k}$, since each of the k ratios in the product is at at least n / k. For the upper bound, observe that Taylor expansion gives $e^{t}=1+t+t^{2} / 2!+\ldots \geq 1+t$. Thus $\left(e^{k / n}\right)^{n} \geq(1+k / n)^{n}=\sum_{i=0}^{n}\binom{n}{i}(k / n)^{i}$ by the binomial theorem. Considering just the k 'th term, we get $e^{k} \geq\binom{ n}{k}(k / n)^{k}$.

An entropy based bound:
Proposition 4. $\binom{n}{\alpha \cdot n}=\frac{(1+o(1))^{H(\alpha) n}}{\sqrt{2 \pi \alpha(1-\alpha) n}}$, where $H(\alpha)=\alpha \log (1 / \alpha)+(1-\alpha) \log (1 /(1-\alpha))$ is the binary entropy function.

The proof is not pretty, but the intuition is that picking a random set of size k is similar to picking a random set where each element is included independently with probability k / n.

Selection with repetitions:
Proposition 5. The number of non-negative integer solutions to $x_{1}+x_{2}+\ldots+x_{n}=r$ is $\binom{n+r-1}{n-1}$.
Proof For every choice of $n-1$ elements S of $[n+r-1]$, we obtain such a solution. x_{1} is the number of elements less than the first element of S, x_{2} is the number of elements between the first two elements of S and so on.
$2^{[n]}$ represents the power set of $[n]$, and $\binom{[n]}{k}$ represents the set of sets of size k. A graph $G=(V=[n], E)$ is specified by a family of sets of size $2, E \subseteq\binom{[n]}{2}$.

Proposition 6. $\binom{n}{2}=\binom{k}{2}+k(n-k)+\binom{n-k}{2}$.

Proof Idea Count the edges in the complete graph by counting the number of edges inside a set S of k vertices, the number outside, and the number that cross.

Proposition 7 (Little Fermat). For any prime $p, a^{p}=a \bmod p$.
Proof First note that $(a+1)^{p}=\sum_{i=0}^{p}\binom{p}{i} a^{i}$ by the binomial theorem. However, $\binom{p}{i}=\frac{p(p-1) \ldots}{i(i-1) \ldots}$ is divisible by p when $0<i<p$. Therefore $(a+1)^{p}=a^{p}+1 \bmod p$. The proof is then completed by induction on a.

Given a family of sets $\mathcal{F} \subseteq 2^{[n]}$, let $d(x)$ denote the number of sets containing x.
Proposition 8 (Double counting). $\sum_{x \in[n]} d(x)=\sum_{A \in \mathcal{F}}|A|$.
Proof Consider the bipartite graph where the left vertices are $[n]$ and the right vertices are \mathcal{F}, with an edge (x, S) exactly when $x \in S$. The left hand side is the number of edges in the graph counted from the left. The right hand side is the number of edges counted from the right.

2 The Chernoff-Hoeffding Bound

Here we give a proof of the Chernoff bound from [1]. The proof is simple, and applies in a variety of settings where true independence is not available.

Let X_{1}, \ldots, X_{n} be independent binary random variables such that

$$
X_{i}= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

Then we shall prove:
Theorem 9. $\operatorname{Pr}\left[\sum_{i} X_{i} \geq p n(1+\epsilon)\right]<2^{-\epsilon^{2} p n / 4}$.
Proof Consider the following mental experiment. We sample the X_{i} 's, and if at least $k=p n(1+\epsilon)$ of the variables turn out to be 1 , we pick a uniformly random subset $S \subset[n]$ of $t=\epsilon p n / 2$ of the coordinates that are 1 , and blame S.

The probability that any fixed set $T \subset[n]$ is blamed is at most

$$
\operatorname{Pr}\left[X_{i}=1, \forall i \in T\right] \cdot \operatorname{Pr}\left[T \text { is blamed } \mid X_{i}=1, \forall i \in T\right] \leq \frac{p^{t}}{\binom{k}{t}}
$$

Note that in general there can be more than k coordinates that are 1 , in which case the odds that T will be picked can only be smaller than $1 /\binom{k}{t}$.
$\operatorname{Pr}\left[\sum_{i} X_{i} \geq p n(1+\epsilon)\right]$ is the same as the probability that any set is blamed, which by the union bound is at most

$$
\begin{aligned}
\frac{p^{t} \cdot\binom{n}{t}}{\binom{k}{t}} & =\frac{p^{t} \cdot n!\cdot(k-t)!\cdot t!}{(n-t)!\cdot k!\cdot t!} \\
& <\frac{p^{t} \cdot n^{t}}{(k-t)^{t}} \\
& =\left(\frac{p n}{k-t}\right)^{t} \\
& =\left(\frac{1}{1+\epsilon / 2}\right)^{\epsilon p n / 2}
\end{aligned}
$$

Using the fact that $2^{x} \leq 1+x$ for $x \in[0,1]$, we get that this probability is at most $2^{-\epsilon^{2} p n / 4}$.

Remark For the above proof to work, it is sufficient to have that the probability of seeing only ones in a fixed set T of t coordinates is exponentially small in t. This is a condition that can often be satisfied even if the variables are not truly independent.

References

[1] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding bounds for applications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223-250, May 1995.

