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1 Refresher of Basic Facts

The number of subsets of [n] = 1, 2, . . . , n of size k is
(
n
k

)
= n!

k!·(n−k)! .

Theorem 1 (Binomial Theorem). (x+ y)n =
∑n

i=0

(
n
i

)
xiyn−i.

Proof There are exactly
(
n
i

)
ways to get the monomial xiyn−i.

Proposition 2. If 0 < k < n,
(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
.

Proof Idea The set of size k either contains n or not.

Some estimates:

Proposition 3. For n ≥ k > 0,
(
en
k

)k ≥ (nk) ≥ (nk )k.
Proof

(
n
k

)
= n

k ·
n−1
k−1 . . .

n−k+1
1 ≥ (n/k)k, since each of the k ratios in the product is at at least

n/k. For the upper bound, observe that Taylor expansion gives et = 1 + t + t2/2! + . . . ≥ 1 + t.
Thus (ek/n)n ≥ (1 + k/n)n =

∑n
i=0

(
n
i

)
(k/n)i by the binomial theorem. Considering just the k’th

term, we get ek ≥
(
n
k

)
(k/n)k.

An entropy based bound:

Proposition 4.
(
n
α·n
)

= (1+o(1))2H(α)n√
2πα(1−α)n

, where H(α) = α log(1/α) + (1 − α) log(1/(1 − α)) is the

binary entropy function.

The proof is not pretty, but the intuition is that picking a random set of size k is similar to
picking a random set where each element is included independently with probability k/n.

Selection with repetitions:

Proposition 5. The number of non-negative integer solutions to x1 +x2 + . . .+xn = r is
(
n+r−1
n−1

)
.

Proof For every choice of n − 1 elements S of [n + r − 1], we obtain such a solution. x1 is the
number of elements less than the first element of S, x2 is the number of elements between the first
two elements of S and so on.

2[n] represents the power set of [n], and
([n]
k

)
represents the set of sets of size k. A graph

G = (V = [n], E) is specified by a family of sets of size 2, E ⊆
(
[n]
2

)
.

Proposition 6.
(
n
2

)
=
(
k
2

)
+ k(n− k) +

(
n−k
2

)
.
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Proof Idea Count the edges in the complete graph by counting the number of edges inside a
set S of k vertices, the number outside, and the number that cross.

Proposition 7 (Little Fermat). For any prime p, ap = a mod p.

Proof First note that (a + 1)p =
∑p

i=0

(
p
i

)
ai by the binomial theorem. However,

(
p
i

)
= p(p−1)...

i(i−1)...
is divisible by p when 0 < i < p. Therefore (a+ 1)p = ap + 1 mod p. The proof is then completed
by induction on a.

Given a family of sets F ⊆ 2[n], let d(x) denote the number of sets containing x.

Proposition 8 (Double counting).
∑

x∈[n] d(x) =
∑

A∈F |A|.

Proof Consider the bipartite graph where the left vertices are [n] and the right vertices are F ,
with an edge (x, S) exactly when x ∈ S. The left hand side is the number of edges in the graph
counted from the left. The right hand side is the number of edges counted from the right.

2 The Chernoff-Hoeffding Bound

Here we give a proof of the Chernoff bound from [1]. The proof is simple, and applies in a variety
of settings where true independence is not available.

Let X1, . . . , Xn be independent binary random variables such that

Xi =

{
1 with probability p

0 with probability 1− p

Then we shall prove:

Theorem 9. Pr[
∑

iXi ≥ pn(1 + ε)] < 2−ε
2pn/4.

Proof Consider the following mental experiment. We sample theXi’s, and if at least k = pn(1+ε)
of the variables turn out to be 1, we pick a uniformly random subset S ⊂ [n] of t = εpn/2 of the
coordinates that are 1, and blame S.

The probability that any fixed set T ⊂ [n] is blamed is at most

Pr[Xi = 1, ∀i ∈ T ] · Pr[T is blamed|Xi = 1,∀i ∈ T ] ≤ pt(
k
t

) .
Note that in general there can be more than k coordinates that are 1, in which case the odds

that T will be picked can only be smaller than 1/
(
k
t

)
.
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Pr[
∑

iXi ≥ pn(1+ ε)] is the same as the probability that any set is blamed, which by the union
bound is at most

pt ·
(
n
t

)(
k
t

) =
pt · n! · (k − t)! · t!

(n− t)! · k! · t!

<
pt · nt

(k − t)t

=

(
pn

k − t

)t
=

(
1

1 + ε/2

)εpn/2
.

Using the fact that 2x ≤ 1 + x for x ∈ [0, 1], we get that this probability is at most 2−ε
2pn/4.

Remark For the above proof to work, it is sufficient to have that the probability of seeing only
ones in a fixed set T of t coordinates is exponentially small in t. This is a condition that can often
be satisfied even if the variables are not truly independent.
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