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1 Families with Structured Intersection

We continue our study of families of sets that have a pairwise intersection. Recall that last time
we showed that the largest intersecting family is the one that includes a single element.

Today, let us try to place some structure on the intersections. Let G be a family of graphs on
the vertex set [n]. We say G is intersecting if for any two graphs T,K ∈ G, T ∩ K has an edge.

Then as before, G is of size at most 2(n2)/2, which can be achieved with the family of all graphs
that contain a designated edge.

Things get interesting if we ask for the intersections to have some structure. Say that G is
5-intersecting if for every T,K ∈ G. T ∩K contains a triangle. The trivial example gives a family

of size 2(n2)/8, but perhaps there is some clever way to get a 5-intersecting family that has size

close to 2(n2)/2, as in the examples above?
For the proof, we shall need to use the notion of entropy. The entropy of a random variable X

is defined to be
H(X) =

∑
x

Pr[X = x] log 1/Pr[X = x].

The entropy is a generalization of the notion of size of a set. It satisfies the following inequalities:

Fact 1. 0 ≤ H(X) ≤ log(# elements in universe).

Given two random variables X,Y (possibly correlated), we define the conditional entropy:

H(X|Y ) = E
y

[[H(X|Y = y)]] .

Then we have

Fact 2 (Chain Rule). H(XY ) = H(X) +H(Y |X) ≤ H(X) +H(Y ).

All of the above inequalities follow easily using the concavity of the logarithm function and
Jensen’s inequality.

Given random variables X1, . . . , Xn and a set of coordinates T = {i1, · · · , ik} ⊂ [n], we write
XT to denote Xi1 , · · · , Xik , the projection of X onto the coordinates in T , and we write X<i to
denote X projected onto all coordinates less than i.

Lemma 3 (Shearer’s Lemma). If S is any distribution on subsets of the coordinates [n], such for
every i, Pr[i ∈ S] ≥ µ, then E [H(XS)] ≥ µ ·H(X).

We give a simple proof due to Jaikumar Radhakrishnan.
Proof For T = {i1, · · · , ik} with i1 < i2 < · · · < ik, observe that

H(XT ) = H(Xi1) +H(Xi2 |Xi1) + · · ·+H(Xik |Xik−1
, · · · , Xi1)

≥ H(Xi1 |X<i1) +H(Xi2 |X<i2) + · · ·+H(Xik |X<ik),
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where we used chain rule in the equality, and used the fact that entropy is only smaller if we
condition on more variables, for the inequality.

Thus, we get that

E
S

[H(XS)] ≥ E
S

[∑
i∈S

H(Xi|X<i)

]
=
∑
i∈[n]

Pr[i ∈ S] ·H(Xi|X<i) whenever i is not in S, this term contributes 0

≥ µ
∑
i∈[n]

H(Xi|X<i)

= µ ·H(X)

Chung, Frankl, Graham and Shearer showed that no such example exists:

Theorem 4 ([1]). If G is 5-intersecting, then |G| ≤ 2(n2)/4.

Proof Let X1, . . . , X(n2)
be the indicator random variables for the edges of a uniformly random

graph chosen from the family. Then we have

H
(
X1, . . . , X(n2)

)
= log |G|.

Now consider the experiment of picking a uniformly random subset S ⊂ [n] of size |S| = n/2,
and throwing out the coordinates that correspond to edges that go from S to outside S. This
leaves 2

(
n/2
2

)
edges. Clearly, each edge is equally likely to be included with probability 2

(
n/2
2

)
/
(
n
2

)
.

Observe that for every triangle, some edge must lie entirely in S or the complement of S. Thus,
after any such projection is applied to the whole family, we are left with an intersecting family.
Thus, the entropy of the resulting variables is at most 2

(
n/2
2

)
− 1.

By Shearer’s lemma,

2
(
n/2
2

)(
n
2

) log |G| ≤ 2

(
n/2

2

)
− 1

⇒ log |G| ≤
(
n

2

)
−

(
n
2

)
2
(
n/2
2

)
=

(
n

2

)
− n(n− 1)

2(n/2)(n/2− 1)

=

(
n

2

)
− n− 1

n/2− 1

≤
(
n

2

)
− 2

In fact, the obvious example is tight:
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Theorem 5 ([2]). If G is 5-intersecting, then |G| ≤ 2(n2)/8.

The theorem is proved by spectral methods.

2 Partial Orders

Recall that given a partially ordered set P, a chain is a sequence x1 < x2 < · · · < xk, and an
antichain is a collection of incomparable elements.

Suppose there is a chain of length r. Then clearly, you cannot partition the set into less than
r antichains, or two elements from the chain will end up in the same antichain. Similarly, if there
is an antichain of length r, you cannot partition the set into less than r chains. In fact, these
relationships are tight — the only reason you cannot partition the family in less than r chains
(resp. s antichains) is because there is an antichain of size r (resp. a chain of length s).

Theorem 6. If r is the length of the largest chain in P, then you can partition P into r antichains

Proof Let Ai be set of elements x such that longest chain ending at x has length i. Then each
such Ai is clearly an antichain, and A1, . . . , Ar is such a partition.

Theorem 7. If r is the size of the largest antichain, then you can partition P into r chains.

Proof Observe that given any n chains, every antichain of size n must pick exactly one element
from each chain. Suppose we have a collection of n chains and we know that there is an antichain of
size n in the elements of these n chains. Let xi be the maximal element of chain i that participates
in some antichain. Then xi, xj are incomparable: if xi > xj , xi cannot be part of an n element
chain, since any such antichain must contain an element that is either equal to xj or less than xj .
Thus {x1, . . . , xn} form an antichain.

We shall proceed by induction on the size of the poset P. Let a ∈ P be a maximal element.
Let n be the size of the biggest antichain in P − {a}. Then by induction we can partition P − {a}
into n chains. Let x1, . . . , xn be as above. Then there are two cases

Case 1: {a, x1, . . . , xn} form an antichain. In this case, the theorem is proved, since we add the
chain containing only a to the partition to get a partition of P into n+ 1 chains.

Case 2: There is an xi < a. In this case, suppose the chain containing xi is a1 < a2 < · · · < ak <
xi < b1 < b2 < · · · < bt. We take out the chain C = a1 < · · · < xi < a from the poset.
Then it must be that in the remaining elements, there is no antichain of size n. Thus by
induction, we can partition the remaining elements into n− 1 chains. We add the chain C to
this collection to prove the theorem.

Next we prove a few results about antichains in the partial order of sets.

Theorem 8 (Sperner). The largest antichain in the subsets of [n] has size
(

n
bn/2c

)
.

We saw one proof using Hall’s theorem. Here’s another:
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Claim 9. If F is an antichain, then
∑

A∈F
(
n
|A|
)−1 ≤ 1.

The claim implies the theorem, since
(
n
|A|
)

is maximized when |A| = bn/2c. Thus the claim

implies that
∑

A∈F
(

n
bn/2c

)
≤ 1, which proves the bound.

To prove the claim, say that a permutation π : [n] → [n] contains A if π([|A|]) = A. Then we
see that the number of permutations that contain A is exactly |A|! · (n − |A|)!. Further, now two
elements of the antichain can be contained in the same permutation. Since the total number of
permutations is n!,

∑
A∈F |A|!(n− |A|)! ≤ n!, which proves the claim.
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