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1 The Isolation Lemma

Here we show a beautiful lemma of Mulmuley, Vazirani and Vazirani.
Let F be a family of sets on the universe [n]. Suppose we assign each element x ∈ [n] a random

weight w(x) ∈ [T ]. For any set S, define the weight of S to be w(S) =
∑

x∈S w(x). Then we have

Lemma 1. Pr[the minimum weight set is not unique] ≤ n/T .

Proof For any x, define

α(x) = min
S∈F ,x/∈S

w(S)− min
S∈F ,x∈S

(w(S)− w(x)).

α(x) depends only on the weights of elements other than x, and is the weight on x needed to
make the lightest set that contains x the same weight as the lightest set that does not contain x.
Once the weights of all other elements have been assigned, w(x) < α(x) means that any minimum
weight set must contain x, w(x) > α(x) means any minimum weight set cannot contain x and
w(x) = α(x) means that both a set that contains x and a set that does not contain x can be
minimum weight. Observe that if two sets achieve the minimum weight, then there must be some
element x which is in one but not in the other. Then it must be that w(x) = α(x). However,
Pr[x = α(x)] ≤ 1/T , so by the union bound, the probability that this happens for any x is at most
n/T .

1.1 An application: non-uniform NL is contained in parity-L

Given a Turing machine that has log n bits of space to work with when operating on an n-bit input,
we can simulate it using a finite automaton with n states (one for each setting of the work space).
We can obtain a directed graph with the following properties:

• Every vertex has fan-out 2, and every edge is labeled 0 or 1.

• There is a designated start vertex s and a designated accept vertex t.

• Each vertex is labeled by an input variable xi, or is unlabeled.

• The output of the Turing machine is 1 if and only if there is a an accepting path that
is consistent with the bits of the input (namely it follows the out-edge labeled xi if the
corresponding vertex is labeled by the variable xi).
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This characterization means that to prove that nondeterminism does not help machines that use
O(log n) space, it is enough to give a deterministic algorithm that takes as input a directed graph,
and outputs 1 exactly when the graph has an s − t path (the graph is obtained by first throwing
out the edges which are inconsistent with the input, which can be done in O(log n) space).

Wigderson showed that you can always map the original automaton to a graph where it is
sufficient to tell whether the number of accepting path is even or odd (rather than 0 or > 0).

Theorem 2. If A is an automaton on n vertices that reads n input bits there is an automaton
B on poly(n) vertices reading n input bits such that for each input x, if A has an accepting path
consistent with x, then B has an odd number of accepting paths consistent with x, and if A has no
accepting path consistent with x, B has an even number of accepting paths consistent with x.

Here we sketch the proof.
Let w : E → [T ] be a weight function on the edges E of the original automaton. We shall

design an automaton that looks for st paths of weight exactly `. We obtain a new automaton G`
w

as follows. Each vertex u in G is replaced by ` vertices u0, . . . , u`−1 in G`
w. If (u, v) is an edge in

the original graph, (ui, vi+w(u,v)) is the corresponding edge of G`
w. Thus a path from a to b of total

weight k is replaced by a path from a0 to bk. Let s0 be the start vertex, and t`−1 be the accept
vertex of the automaton. Observe that if we knew the weight of the minimum weight accepting
path, then we could set ` to be this weight. This would give us an automaton where there is a
single accepting path (if any).

Claim 3. G`
w accepts x if and only if there is an s − t path of weight exactly ` in the original

automaton on input x.

Pick n weight functions w1, . . . , wn at random. By the isolation lemma, given any fixed input,
the shortest s− t path (if any) is unique except with probability n2/T , since the number of edges
is at most n2. The probability that no weight function gives a unique shortest path is (n2/T )n.
By the union bound, except with probability 2n(n2/T )n, for every input x, there is some weight
function wi that gives a unique minimum weight s− t path (if one exists).

Claim 4. If T > 2n2, there is some choice of weight functions w1, . . . , wn such that if x is not
accepted by the original automaton, then none of the the automatons G`

wi
for ` ≤ nT accepts x, and

if x is accepted by the original automaton, then one of the automatons G`
wi

has a unique accepting
path for x.

We fix a choice of w1, . . . , wn that satisfies the above claim. Let si, ti be the start and end
vertices for each of these n2T graphs. We generate the final automaton as follows.

1. The start vertex is s1 and the accept vertex is tn
2T .

2. Identify ti with si+1 for each i.

3. Add the edges (si, ti) and (s1, tn
2T ) (formally we will need to add dummy vertices to ensure

that the fan-out is still 2, but we gloss over these details here).

By construction, if x is not accepted by the original automaton, then there are exactly two
accepting paths in the new automaton. One is obtained by following the edge from the start vertex
to the accept vertex, and the other is obtained by using the edges (si, ti). On the other hand,
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if x is accepted by the original automaton, we get an odd number of accepting paths in the new
automaton. This is because for some wi, ` we have exactly one accepting path in G`

wi
, which gives

two accepting paths in the corresponding subgraph. This ensures the total number of paths that
go through each automaton is even, and the total number of accepting paths is odd.

2 Finite Fields Refresher

We recalled some basic facts about finite fields, most of which I do not reproduce here.
Let F be any field.

Fact 5. Given any d+ 1 points, evaluating univariate degree d polynomials on those points defines
a linear bijection between the coefficients of the polynomial and the evaluations.

Proof Since the space of evaluations and the space of polynomials have the same dimension, it
will suffice to show that the evaluation map is onto. Given a1, . . . , ad+1, define the i’th polynomial
pi =

∏
j 6=i(X − aj)/(ai − aj). This is a degree d polynomial, and further

pi(aj) =

{
1 i = j

0 else.

Thus any target evaluations can be obtained by taking linear combinations of the pi’s.

A polynomial is irreducible if it cannot be factored.

Fact 6. If p(X) is an irreducible polynomial, F[X]/p (namely polynomials mod p) is a finite field
of size |F|d.

Fact 7. For a prime p, let Fp denote the integers mod p. Up to isomorphism the only finite fields
are the ones of size pd obtained as Fp[X]/q(X) for some irreducible degree d polynomial q(X).

3 Constructions Based on Polynomials

3.1 Pairwise Independent Bits

Goal: A small set S ⊂ {0, 1}n such that for a uniformly random X ∈ S, for each i 6= j, Xi is
independent of Xj and uniform.

We work with a finite field of size 2t ≥ n. Each element of S is obtained by picking a degree
one polynomial (i.e. line) p(X) = a+ bX. We evaluate this polynomial on n distinct field elements
to obtain p(α1), . . . , p(αn). By Fact 5, if a, b are uniform, then any two of these evaluations are
uniform and independent. To obtain pairwise independent bits, simply encode each field element
with a bit string.

This construction gives a set of size n2.
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