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Lecture 12 Construction by Polynomial, and Pseudorandomness

Lecturer: Anup Rao

1 Constructions Based on Polynomials

We continue our tour of combinatorial constructions based on polynomials. Recall:

Fact 1. Given any d+ 1 points, evaluating univariate degree d polynomials on those points defines
a linear bijection between the coefficients of the polynomial and the evaluations.

1.1 Error Correcting Codes

Goal: An encoding E : {0,1}" — {0,1}°) such that for = # y, E(x) disagrees with E(y) in many
coordinates.

The Reed-Solomon code E : F¥ — F” is defined as follows. Interpret each message as a degree
k polynomial p(X), and define

E(p(X)) = E(a1), ..., E(on),

for distinct field elements aq, ..., a,. Two distinct polynomials p(X), ¢(X) can agree on at most
k points by Fact 1, so they must disagree on n — k points. This bound is in fact tight (Singleton
Bound), since if the encoding ensured that every two inputs disagreed on n — k + 1 points, the map
from F* into the first k — 1 coordinates would be injective, which is a contradiction.

If we naively translate everything to bits, we do not obtain a code with great distance. The
right way is to recursively encode each field element using a smaller code. Let’s leave it at that.

1.2 e-biased Sets

Goal: A small set S C F} such that for every non-empty set 7' C [n], if = is a uniformly random
element from S, >, x; is e-close to uniform.

We show a construction due to Alon, Goldreich, Hastad and Peralta. Let F be a field of size
2! > n/e. Every element of the set is indexed by a,b € F. First consider the vector

z = (a,ab,ab?, ... ab"" ') € F"

Then for any non-empty set 7' C [n], Y ,cr i = D ;epab™ =ad> .0 0! = a- pr(b), where here
pr is the polynomial defined by 7. This polynomial has degree at most n — 1, so the probability
that pr(b) = 0 is at most 272 < e. Whenever it is not 0, 2 - py(b) is uniformly distributed. Thus
we get a field element that is uniformly distributed except for e fraction of the time.

This did not yet give us a distribution on F%, but we can easily fix that. Note that every element
of F can be viewed as a degree (¢t — 1) polynomial in F[X]/p(X), for some irreducible polynomial p

12 Construction by Polynomial, and Pseudorandomness-1



of degree t. Further, adding two field elements is exactly like adding two polynomials (namely, the
addition is coordinate-wise). Let us write 3° to denote the constant bit of the field element y. We
use just the constant terms of the above sequence:

z=(a% (ab)?, ..., (ab" 1)°) € F}

i—1\0
(Cierab'™)" = (a-pr(0))’,
where here pr is polynomial defined by 7. Again, whenever pr(b) # 0, (a - pp(b))° is uniformly
distributed.

Then for any non-empty set T C [n], ZieT x; = ZieT(abi—l)o

1.3 Sets with Small pairwise Intersection

Recall that if we have a r-uniform family of sets F with pairwise intersection at most k, then:

Lemma 2 (Corradi). If r2 > kn, |F| < ta=kn

r2—kn "

In other words, if 72 > kn, there can be at most poly(n) sets. Now we show how to get

exponentially many sets of smaller size.

Take a finite field F of size y/n. Our universe will be F x F. Consider all degree k polynomials
in F[X]. There are (k+1)V™ such polynomials, and for each such polynomial p(X) we obtain a set
Sy ={(a,p(a) : « € F)} of size r = \/n. By Fact 1, any two sets can intersect in at most k points.

2 Randomness from Hardness

In this section, we shall describe a pivotal construction of Nisan and Wigderson, that led to theorems
that can be paraphrased as: “A function that cannot be computed by small circuits can be used
to generate small support distributions that look random to small circuits”.

A more concrete consequence of these results is the following theorem (which is a special case
of a theorem by Impagliazzo and Wigderson that builds on the work of Nisan and Wigderson):

Theorem 3. Either there are circuits of size 2/19000 that can compute SAT, or every randomized
polynomaual time algorithm can be simulated by a deterministic polynomial time algorithm.

In the above theorem, SAT can actually be replaced by any exp computable function. We
shall need the concept of a pseudorandom generator. Let uy denote a uniformly random element of

{0, 1}~

Definition 4. G : {0,1}* — {0,1}" is an e-pseudorandom generator for circuits of size s, if for
any circuit C of size s, Pr[C(G(uy)) = 1] — Pr[C(u,) = 1] <e.

Observe that if we have such a pseudorandom generator,
| Pr[C(G(ug)) = 1] — Pr[C(uy) = 1]| <€

for circuits of size s —1, since one can always flip the output bit of the circuit with a single not gate.
If ¢ = n, then the identity function is a pseudorandom generator. Pseudorandom generators are
interesting when n > /¢, since in this case, the generator must be using some facts about circuits,
since its output is actually very far from uniformly distributed (in particular it is supported on
only 2¢ elements).
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2.1 Obtaining One Pseudorandom Bit
Let f:{0,1}* — {0,1} be a function that is so hard, that for every circuit C of size s,

Prif(y) = Cly)] < e
We can use f to come up with a non-trivial pseudorandom generator as in the following claim.

Claim 5. G(z) = (z, f(z)) is €/4-pseudorandom for circuits of size s — 1.

Proof Suppose C is a circuit such that Pr[C(z, f(z)) = 1] — Pr[C(z,u) = 1] > e. This means
that B, [Pry[C(z, f(x)) = 1] — Pr,[C(x,u) = 1]] > €/4. Say that C' is correct on x if C(x, f(x)) =1
and C(z,1 — f(z)) =0, and that C is wrong on z if C(z, f(z)) =0 and C(z,1 — f(x)) = 1. Then,

1/2  if C is correct on x
lir[C(:c, () =1] — F;r[C(x,u) =1] =41 -1/2 if C is wrong on z
0 else.

Thus,
<Pr[C is correct on z] — Pr[C is wrong on x]) > 2¢/4 =¢/2.
x X

Now construct a circuit for computing f as follows. Consider the circuit C’ that takes in x and
a random bit u and computes:

u C(z,u) =1
1—u C(z,u)=0

C'(z,u) = {

If C is correct on x, then C'(z,u) = f(z). If C is wrong on x, then C'(z,u) # f(x). Otherwise,
C'(z,u) = f(x) with probability 1/2. In total, we get that Pry ,[C’(z,u) = f(z)] > 1/2+ €. By
averaging there must be some fixing of u that gives a deterministic circuit of the same size with
the same advantage in computing f. This contradicts the hardness of f. B

2.2 Obtaining Many Bits

However, this only gave us one extra bit. In order to obtain many (exponential in ¢) number of
bits, we use our construction of sets with small intersection.

Suppose we have m sets Si,...,S, C [{], each of size ¢, with pairwise intersections k. For
x € {0, 1}5 , let zg, denote = projected on the coordinates of S;. The construction is to output

NW(z) = (f(zs,), f(2s,),-- -, flxs,)).
Theorem 6. NW(z) is en/4 pseudorandom for circuits of size s — 2¥n.

In order to prove this, let C' be a circuit that contradicts the theorem. We will consider the
behavior of C' on n + 1 different distributions. Define the distribution

A = (f($51)7f(x52>7 s 7f(x5i)7un_i>7
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for arandom . In other words, A; is distributed like the output NW(z) in the first ¢ coordinates, and
has uniformly random and independent bits in the remaining coordinates. Note that A, = NW(z),
and Ag = u,. Then we have that

en/4 < (Pr[C(Ay) = 1] — Pr[C(Ap) = 1]) =Pr[C(A,) = 1] — Pr[C(A,—1) = 1]
+ Pr[C(An—1) = 1] = Pr[C(A,—2) = 1]

+Pr[C(Ay) = 1] — Pr[C(4g) = 1]

By averaging, we get
Claim 7. There ezists i such that Pr[C(A;) = 1] — Pr[C(A;—1) = 1] > €/4.

Let zge denote x projected on the complement of the set S;. By averaging, there must be
some fixing of the bits in zge and the uniform bits in the last n — ¢ + 1 coordinates such that
Pr[C(4;) = 1] — Pr[C(A;—1) = 1]. Henceforth fix these bits so that this difference is maximized.

The net effect is that we obtain a circuit T of size at most the size of C such that

PI“[T(f(:L’Sl), R f(l‘sz)) = 1] - PI‘[T(f(@gl), .- '7f(x5i71)’u) = 1] > 6/4'

As in the proof of Claim 5, say that T" is correct on xg, if

T(f(xs,),..., f(zs)) =1and T(f(zs,),..., 1 — f(zs,)) =0,

and say that T is wrong if
T(f(xs,),..., f(zs,)) =0and T(f(zs,),..., 1 — f(zs,)) = 1.

Just like in Claim 5, we get that

Pr[T is correct on xg,] — Pr[T" is wrong on zg,| > €/2.
zs, zs,

As in Claim 5, we define

u T(f(x51)""vf(x5171)’u)
L—u T(f(zs),--- 7f(x3i71)7u)

Then Pr[T"(xzs;,u) = f(xs;)] > 1/2 + ¢, so there is some fixing of u that gives a function
computing f. However, this is not yet a contradiction, since we have not yet shown that T is
computable by a small circuit. The key insight is that since |S; U S;| < k, each of the functions
f(zs;) actually only depend on & bits of S;. Any function on k bits can be computed by a circuit

1
0

T/(xSiv u) = {

of size 2. Thus we obtain a circuit that computes 1" of size at most s — n2* + n2¥ = s. This is a
contradiction.

The explicit construction of sets with small pairwise intersection using polynomials allows us
to set t = 100logn, k = logn. Then we obtain a generator that has an input size of t> = 10*log?n
that generates n < t* bits that cannot be distinguished from uniform by any circuit of size n'%° —n?2.
By being more careful in the above analysis, one can obtain n bits that fool circuits of size n using

only logn truly random bits as input.
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