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1 Constructions Based on Polynomials

We continue our tour of combinatorial constructions based on polynomials. Recall:

Fact 1. Given any d+ 1 points, evaluating univariate degree d polynomials on those points defines
a linear bijection between the coefficients of the polynomial and the evaluations.

1.1 Error Correcting Codes

Goal: An encoding E : {0, 1}n → {0, 1}O(n) such that for x 6= y, E(x) disagrees with E(y) in many
coordinates.

The Reed-Solomon code E : Fk → Fn is defined as follows. Interpret each message as a degree
k polynomial p(X), and define

E(p(X)) = E(α1), . . . , E(αn),

for distinct field elements α1, . . . , αn. Two distinct polynomials p(X), q(X) can agree on at most
k points by Fact 1, so they must disagree on n − k points. This bound is in fact tight (Singleton
Bound), since if the encoding ensured that every two inputs disagreed on n−k+ 1 points, the map
from Fk into the first k − 1 coordinates would be injective, which is a contradiction.

If we naively translate everything to bits, we do not obtain a code with great distance. The
right way is to recursively encode each field element using a smaller code. Let’s leave it at that.

1.2 ε-biased Sets

Goal: A small set S ⊂ Fn2 such that for every non-empty set T ⊆ [n], if x is a uniformly random
element from S,

∑
i∈T xi is ε-close to uniform.

We show a construction due to Alon, Goldreich, Hastad and Peralta. Let F be a field of size
2t ≥ n/ε. Every element of the set is indexed by a, b ∈ F. First consider the vector

x = (a, ab, ab2, . . . , abn−1) ∈ Fn

Then for any non-empty set T ⊂ [n],
∑

i∈T xi =
∑

i∈T ab
i−1 = a

∑
i∈T b

i−1 = a · pT (b), where here
pT is the polynomial defined by T . This polynomial has degree at most n − 1, so the probability
that pT (b) = 0 is at most n−1

n/ε < ε. Whenever it is not 0, x · pT (b) is uniformly distributed. Thus
we get a field element that is uniformly distributed except for ε fraction of the time.

This did not yet give us a distribution on Fn2 , but we can easily fix that. Note that every element
of F can be viewed as a degree (t− 1) polynomial in F[X]/p(X), for some irreducible polynomial p
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of degree t. Further, adding two field elements is exactly like adding two polynomials (namely, the
addition is coordinate-wise). Let us write y0 to denote the constant bit of the field element y. We
use just the constant terms of the above sequence:

x = (a0, (ab)0, . . . , (abn−1)0) ∈ Fn2

Then for any non-empty set T ⊂ [n],
∑

i∈T xi =
∑

i∈T (abi−1)0 =
(∑

i∈T ab
i−1)0 = (a · pT (b))0,

where here pT is polynomial defined by T . Again, whenever pT (b) 6= 0, (a · pT (b))0 is uniformly
distributed.

1.3 Sets with Small pairwise Intersection

Recall that if we have a r-uniform family of sets F with pairwise intersection at most k, then:

Lemma 2 (Corradi). If r2 > kn, |F| ≤ rn−kn
r2−kn .

In other words, if r2 > kn, there can be at most poly(n) sets. Now we show how to get
exponentially many sets of smaller size.

Take a finite field F of size
√
n. Our universe will be F× F. Consider all degree k polynomials

in F[X]. There are (k+ 1)
√
n such polynomials, and for each such polynomial p(X) we obtain a set

Sp = {(α, p(α) : α ∈ F)} of size r =
√
n. By Fact 1, any two sets can intersect in at most k points.

2 Randomness from Hardness

In this section, we shall describe a pivotal construction of Nisan and Wigderson, that led to theorems
that can be paraphrased as: “A function that cannot be computed by small circuits can be used
to generate small support distributions that look random to small circuits”.

A more concrete consequence of these results is the following theorem (which is a special case
of a theorem by Impagliazzo and Wigderson that builds on the work of Nisan and Wigderson):

Theorem 3. Either there are circuits of size 2n/10000 that can compute SAT, or every randomized
polynomial time algorithm can be simulated by a deterministic polynomial time algorithm.

In the above theorem, SAT can actually be replaced by any exp computable function. We
shall need the concept of a pseudorandom generator. Let u` denote a uniformly random element of
{0, 1}`.

Definition 4. G : {0, 1}` → {0, 1}n is an ε-pseudorandom generator for circuits of size s, if for
any circuit C of size s, Pr[C(G(u`)) = 1]− Pr[C(un) = 1] ≤ ε.

Observe that if we have such a pseudorandom generator,

|Pr[C(G(u`)) = 1]− Pr[C(un) = 1]| ≤ ε

for circuits of size s−1, since one can always flip the output bit of the circuit with a single not gate.
If ` = n, then the identity function is a pseudorandom generator. Pseudorandom generators are
interesting when n � `, since in this case, the generator must be using some facts about circuits,
since its output is actually very far from uniformly distributed (in particular it is supported on
only 2` elements).
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2.1 Obtaining One Pseudorandom Bit

Let f : {0, 1}t → {0, 1} be a function that is so hard, that for every circuit C of size s,

Pr
x

[f(y) = C(y)] ≤ ε.

We can use f to come up with a non-trivial pseudorandom generator as in the following claim.

Claim 5. G(x) = (x, f(x)) is ε/4-pseudorandom for circuits of size s− 1.

Proof Suppose C is a circuit such that Pr[C(x, f(x)) = 1] − Pr[C(x, u) = 1] > ε. This means
that Ex [Pru[C(x, f(x)) = 1]− Pru[C(x, u) = 1]] > ε/4. Say that C is correct on x if C(x, f(x)) = 1
and C(x, 1− f(x)) = 0, and that C is wrong on x if C(x, f(x)) = 0 and C(x, 1− f(x)) = 1. Then,

Pr
u

[C(x, f(x)) = 1]− Pr
u

[C(x, u) = 1] =


1/2 if C is correct on x

−1/2 if C is wrong on x

0 else.

Thus, (
Pr
x

[C is correct on x]− Pr
x

[C is wrong on x]
)
> 2ε/4 = ε/2.

Now construct a circuit for computing f as follows. Consider the circuit C ′ that takes in x and
a random bit u and computes:

C ′(x, u) =

{
u C(x, u) = 1

1− u C(x, u) = 0

If C is correct on x, then C ′(x, u) = f(x). If C is wrong on x, then C ′(x, u) 6= f(x). Otherwise,
C ′(x, u) = f(x) with probability 1/2. In total, we get that Prx,u[C ′(x, u) = f(x)] > 1/2 + ε. By
averaging there must be some fixing of u that gives a deterministic circuit of the same size with
the same advantage in computing f . This contradicts the hardness of f .

2.2 Obtaining Many Bits

However, this only gave us one extra bit. In order to obtain many (exponential in `) number of
bits, we use our construction of sets with small intersection.

Suppose we have m sets S1, . . . , Sm ⊆ [`], each of size t, with pairwise intersections k. For
x ∈ {0, 1}`, let xSi denote x projected on the coordinates of Si. The construction is to output

NW(x) = (f(xS1), f(xS2), . . . , f(xSn)).

Theorem 6. NW(x) is εn/4 pseudorandom for circuits of size s− 2kn.

In order to prove this, let C be a circuit that contradicts the theorem. We will consider the
behavior of C on n+ 1 different distributions. Define the distribution

Ai = (f(xS1), f(xS2), . . . , f(xSi), un−i),
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for a random x. In other words, Ai is distributed like the output NW(x) in the first i coordinates, and
has uniformly random and independent bits in the remaining coordinates. Note that An = NW(x),
and A0 = un. Then we have that

εn/4 < (Pr[C(An) = 1]− Pr[C(A0) = 1]) = Pr[C(An) = 1]− Pr[C(An−1) = 1]

+ Pr[C(An−1) = 1]− Pr[C(An−2) = 1]

...

+ Pr[C(A1) = 1]− Pr[C(A0) = 1]

By averaging, we get

Claim 7. There exists i such that Pr[C(Ai) = 1]− Pr[C(Ai−1) = 1] > ε/4.

Let xSc
i

denote x projected on the complement of the set Si. By averaging, there must be
some fixing of the bits in xSc

i
and the uniform bits in the last n − i + 1 coordinates such that

Pr[C(Ai) = 1] − Pr[C(Ai−1) = 1]. Henceforth fix these bits so that this difference is maximized.
The net effect is that we obtain a circuit T of size at most the size of C such that

Pr[T (f(xS1), . . . , f(xSi)) = 1]− Pr[T (f(xS1), . . . , f(xSi−1), u) = 1] > ε/4.

As in the proof of Claim 5, say that T is correct on xSi if

T (f(xS1), . . . , f(xSi)) = 1 and T (f(xS1), . . . , 1− f(xSi)) = 0,

and say that T is wrong if

T (f(xS1), . . . , f(xSi)) = 0 and T (f(xS1), . . . , 1− f(xSi)) = 1.

Just like in Claim 5, we get that

Pr
xSi

[T is correct on xSi ]− Pr
xSi

[T is wrong on xSi ] > ε/2.

As in Claim 5, we define

T ′(xSi , u) =

{
u T (f(xS1), . . . , f(xSi−1), u) = 1

1− u T (f(xS1), . . . , f(xSi−1), u) = 0

Then Pr[T ′(xSi , u) = f(xSi)] ≥ 1/2 + ε, so there is some fixing of u that gives a function
computing f . However, this is not yet a contradiction, since we have not yet shown that T ′ is
computable by a small circuit. The key insight is that since |Si ∪ Sj | ≤ k, each of the functions
f(xSj ) actually only depend on k bits of Si. Any function on k bits can be computed by a circuit

of size 2k. Thus we obtain a circuit that computes T ′ of size at most s− n2k + n2k = s. This is a
contradiction.

The explicit construction of sets with small pairwise intersection using polynomials allows us
to set t = 100 log n, k = log n. Then we obtain a generator that has an input size of t2 = 104 log2 n
that generates n < tk bits that cannot be distinguished from uniform by any circuit of size n100−n2.
By being more careful in the above analysis, one can obtain n bits that fool circuits of size n using
only log n truly random bits as input.
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