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Lecture 13 Bounds by Counting Dimensions

Lecturer: Anup Rao

The theme of todays lecture is how counting the dimension of an appropriately chosen linear
space can be used to give bounds on combinatorial objects. We write Fk to denote the vector space
of dimension k over the field F.

We say that v1, . . . , vr ∈ Fk are linearly independent if for αi ∈ F,
∑

i αivi = 0 only if αi =
0 for all i. For a subspace W ⊆ Fk, we say W is of dimension d = dim(W ) if there are d
linearly independent vectors in W such that every element of W can be generated by taking linear
combinations of these vectors.

Definition 1. We define the inner product of two vectors: 〈u, v〉 =
∑

i ui · vi.

Fact 2. Given a matrix with field element entries, its rank rk(M) is the dimension of space spanned
by the rows, which is always equal to the dimension of the space spanned by the columns.

Fact 3. A square matrix M has full rank iff the determinant det(M) 6= 0.

1 Even/Odd Intersections and Sizes

Suppose F is a family of even-sized sets, such that all intersections are even. How many sets can
there be? 2n/2.

A useful definition is the incidence vector of a set A, whose i’th coordinate is 1 if i ∈ A and is
0 otherwise.

Theorem 4. If every set of F is of odd size, but the intersections are all of even size, then |F| ≤ n.

Proof View the incidence vectors of as vectors in Fn
2 . Then we claim that they are all linearly in-

dependent. Indeed the hypothesis implies that if A 6= B ∈ F , 〈1A, 1A〉 = 1 and 〈1A, 1B〉 = 0. Thus,
if 1A1 + · · ·+ 1Am = 0 for some distinct A1, . . . , Am ∈ F , then 1 = 〈1A1 , 1A2 + 1A3 + · · ·+ 1Am〉 =
〈1A1 , 1A2〉+ 〈1A1 , 1A3〉+ · · ·+ 〈1A1 , 1Am〉 = 0, which is a contradiction.

Now let us flip things around.

Theorem 5. If every set of F is of even size, but the intersections are all of odd size, then |F| ≤ n.

Observe that Theorem 4 shows that |F| ≤ n + 1: simply add an element to the universe and
each set to obtain a family of odd sized sets on n+ 1 elements with even intersections.
Proof Once again, we consider the vectors 1A ∈ Fn

2 for sets A in the family. This time we have
〈1A, 1A〉 = 0, and 〈1A, 1B〉 = 1 for distinct A,B. For the sake of contradiction, assume that there
is such a family of size n + 1. Then, the vectors 1A must be linearly dependent, so there is some
non-trivial linear combination

∑
A αA · 1A = 0. For any B ∈ F , we have

0 =

〈
1B,

∑
A

αA · 1A

〉
=
∑
A 6=B

αA. (1)
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By repeating this for another set B′, we obtain 0 =
∑

A 6=B αA +
∑

A 6=B′ αA = αB′ + αB. Thus, all
the coefficients αA must be equal, and so must all be 1, i.e.

∑
A∈F 1A = 0.

Equation 1 implies that n is even. Now consider the family F ′ that consists of the complements
of the sets of F . Every set in this family has even size, and the intersections are all odd, since the
intersection of two sets in F ′ is equal to the complement of the union of two sets A,B ∈ F , and
|A ∪B| = |A|+ |B| − |A ∩B|, which is odd.

Thus, we obtain that 0 =
∑

A∈F 1A +
∑

A∈F 1Ac , where Ac denotes the complement of A. Since
1A + 1Ac = 1[n], we get that (n+ 1) · 1[n] = 0, but this is a contradiction, since n+ 1 is odd.

2 Fisher’s Inequality

Theorem 6. Let F be a family of sets on [n] such that all pairs of sets intersect in the same
number of points k > 0. Then |F| ≤ n.

Proof For each set A, let 1A ∈ Rn be the incidence vector. We will show that these must be
linearly independent.

Indeed, if
∑

A αA · 1A = 0 is a non-trivial linear combination, then

0 =

〈∑
A

αA · 1A,
∑
A

αA · 1A

〉
=
∑
A

α2
A 〈1A, 1A〉+

∑
A 6=B

αAαB 〈1A, 1B〉

=
∑
A

α2
A|A|+ k

∑
A 6=B

αAαB

=
∑
A

α2
A(|A| − k) + k

(∑
A

αA

)2

> 0,

which is a contradiction.

3 Lines from Points

Theorem 7. Let S ⊂ Rd be a collection of n points. Pass a line through each pair of points. Then
we must obtain either one line, or at least n lines.

Proof Suppose all the points are not co-linear. Then define Ai to be the set of lines through
i’th point. Then observe that for distinct i, j, |Ai ∩ Aj | = 1. Thus, the number of such sets is at
most the number of lines by Theorem 6. If all points do not lie on a single line, then each |Ai| ≥ 2,
which implies that Ai 6= Aj for i, j distinct, since any two lines can pass through at most 1 common
point. Thus the number of sets is n, which implies that there are at least n lines.
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4 Sets with few intersection sizes

Given functions that map a set S to a field F, we can view the functions as vectors in a vector space:
the i’th coordinate is the evaluation of the function on i. We have the following simple lemma.

Lemma 8. Suppose f1, . . . , fk are functions, and x1, . . . , xk are points such that fi(xj) = 0 if i > j,
and fi(xj) 6= 0 if i = j. Then f1, . . . , fk are linearly independent.

Proof If not then
∑

i αifi = 0. Let i be the minimum non-zero coefficient. Evaluate the linear
combination on xi to obtain αifi(xi) = 0 which means αi = 0, a contradiction.

Next, we generalize Fisher’s inequality.

Theorem 9. If F is a family of sets, and L is a set of integers such that for all A 6= B ∈ F ,
|A ∩B| ∈ L, then |F| ≤

∑|L|
i=0

(
n
i

)
.

Observe that the theorem is tight: consider all sets of size at most |L|.
Proof Let A1, A2, . . . , Am be the sets of the family, in order of increasing size. Then define the
multivariate polynomials in the variables X = X1, . . . , Xn,

fi(X) =
∏

`<|Ai|,`∈L

(〈1A, X〉 − `)

Observe that fi(1Aj ) = 0 if i > j, and fi(1Aj ) 6= 0 if i = j. Thus, by Lemma 8, the functions
are all linearly independent.

Next we shall show that all of these functions live in a small linear space. Indeed, each function
is defined by a polynomial of degree at most |L|. Further, we can replace X2

i = Xi to obtain
polynomials that compute the same functions on the indicator vectors and have degree at most 1
in each variable. The set of such polynomials is spanned by the number of multilinear monomials
of degree at most |L|. This proves the bound.
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