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Lecture 14 Bounds by Counting Dimensions

Lecturer: Anup Rao

1 Multivariate Polynomials

The following lemma generalizes the fact that there is a bijection between univariate polynomials
of degree d and their evaluations on d + 1 points, the case of multivariate polynomials.

Lemma 1. If S1,59,...5, CTF are all sets of size d+ 1, and Py is the set of polynomials whose
degree in any variable is at most d, then there is a bijection between polynomials p € Py, their
evaluations FHD"™ where the coordinates of the evaluations are indexed by elements of Sy x- - -X Sy,
and the coordinate that corresponds to x is p(x).

Proof We shall show that the map from polynomials to evaluations is a full rank linear trans-
formation. Given any point (aj,q9,...,an) € S X -+ X S,, we define the polys f;(X;) =
[oes; arai % And define f, = []; fi(X;). This is a polynomial whose degree in each vari-
able is at most d, and for 5 € S1 x --- X Sy,

Thus the rank of the evaluation map is full. W

Last time, we used polynomials to prove the following theorem:

Theorem 2. If F is a family of sets such that for all A # B € F, |ANB| € L, then |F| < ZLQO (")

)

Without much additional work, you will prove the following in homework:

Theorem 3. If F is a family of sets and p is a prime such that for all A# B € F, |[ANB| € L

mod p and |A| ¢ L mod p, then |F| < I (7).

)

2 Ramsey Graphs

An undirected graph on n vertices is called k-Ramsey if it does not have an independent set or
clique of size k. Note that if a graph is k-Ramsey, then it is also (k + 1)-Ramsey. How small can k
be as a function of the number of vertices n?

In one of the first illustrations of the probabilistic method, Erdés showed the following theorem:

Theorem 4. A random graph on n vertices is 2logn-Ramsey with high probability.
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Proof The probability that any fixed set of size k is a clique or independent set is exactly 9-(5)+1,
Thus, by the union bound, the probability that there is any clique or independent set of size k is
at most

2—(§)+1 <Z> < 2—k2/2+k/2+1(en/k)k — 9—k?/2+k/2+1+klogn—klogk+kloge.

When k = 2logn, this is 2-2legnloglogntlogntit2log(en) which tends to 0 as n tends to infinity. M

Can we construct such a graph deterministically with a fast algorithm? Frankl and Wilson gave

the following construction based on Fisher’s inequalities: For a prime p > 2, the vertices of the
3

graph are (p[ff]l) (namely subsets of [p®]) of size p?> — 1. There is an edge between A, B if and only
if AN B|=—1 mod p.
Theorem 5. The graph constructed above is k-Ramsey for k = Z;D;ol (p;).
Proof If there is an independent set S, for A # B € S, |[ANB| € {0,1,2,...,p—2} mod p, and
further, |[A| = =1 mod p. Thus, by Theorem 3, |S| < k.

On the other hand, if S is a clique, then for A# B € S, |[ANB| € {p—1,2p—1,...,p* —p—1},
which is a set of size p — 1. So by Theorem 2, |S| < k. R

In the above theorem, k < p@®) = 20(logp) 4nq n = pQ(pQ) = 22r*logP)  Thus we obtain a
k-Ramsey graph with £ ~ 2\/@, which is much larger than the k ~ 2!°81°8" promised by the
probabilistic method. A few years ago, Barak, Rao, Shaltiel and Wigderson improved this to give
an algorithm with better performance.

Theorem 6 (BRSW). There is a polynomial time algorithm that computes the adjacency matriz
of a size n graph that is 2(l°g")o<l>—Ramsey.

Unfortunately, this algorithm is much more complicated than the construction of Frankl and
Wilson.

3 Bounds on Besicovitch Sets

Let F be a finite field of size q. A set S C F" is called a Besicovitch set if it contains a line in every
direction, i.e. for every = € F", there exists a y € F" such that the line {tx +y: ¢t € F} C S. How
small can such a set be? We give a proof by Dvir.

Theorem 7. |S| > (q_}f").

Proof Fix any such set S with |S| < (q_}f"). Then consider the space of degree g—1 polynomials.
This is a space of dimension (q_if"). We claim that there must be a non-zero polynomial ¢ in
this space such that g maps every point of S to 0. Indeed, the constraint that g(x) = 0 is a linear
constraint on the coefficients of g. Since the number of coefficients is more than the number of
constraints, there must be some non-zero setting of coefficients that satisfies all constraints’.

'If this argument is not clear, consider the matrix M whose rows correspond to points of S, columns corresponds
to coefficients of a polynomial from the space, and the M; ; is the evaluation of the j’th monomial on the i’th element
of S. Thus, for a column vector A, the product M A denotes the evaluation of the polynomial that corresponds to
the coeflicients A at the points of S. Since the number of rows of M is less than the number of columns, the columns
are not linearly independent, and so there must be a non-zero A such that M A = 0.
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Thus, there is a non-zero polynomial g of total degree d < ¢ — 1 such that for fixed x there
exists y for which L={t-z+y:t €F}, g(L) = 0. Since g(t -  + y) is a univariate polynomial of
degree at most d, and this polynomial has ¢ roots, it must be the 0 polynomial.

Now consider the degree d coefficient of g(¢ -z 4 y) (as a univariate polynomial in t). Let g4 be
the degree d homogenous part of g. Then the degree d coefficient of g(¢t-z+7y) is exactly gq(x). Thus
ga(z) = 0 for every = € F™, so by Lemma 1, gq must be the 0 polynomial, which is a contradiction.

|
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