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1 Multivariate Polynomials

The following lemma generalizes the fact that there is a bijection between univariate polynomials
of degree d and their evaluations on d+ 1 points, the case of multivariate polynomials.

Lemma 1. If S1, S2, . . . Sn ⊂ F are all sets of size d + 1, and Pd is the set of polynomials whose
degree in any variable is at most d, then there is a bijection between polynomials p ∈ Pd, their
evaluations F(d+1)n, where the coordinates of the evaluations are indexed by elements of S1×· · ·×Sn,
and the coordinate that corresponds to x is p(x).

Proof We shall show that the map from polynomials to evaluations is a full rank linear trans-
formation. Given any point (α1, α2, . . . , αn) ∈ S1 × · · · × Sn, we define the polys fi(Xi) =∏
α∈Si,α 6=αi

Xi−α
αi−α . And define fα =

∏
i fi(Xi). This is a polynomial whose degree in each vari-

able is at most d, and for β ∈ S1 × · · · × Sn,

fα(β) =

{
1 if α = β,

0 else.

Thus the rank of the evaluation map is full.

Last time, we used polynomials to prove the following theorem:

Theorem 2. If F is a family of sets such that for all A 6= B ∈ F , |A∩B| ∈ L, then |F| ≤
∑|L|

i=0

(
n
i

)
.

Without much additional work, you will prove the following in homework:

Theorem 3. If F is a family of sets and p is a prime such that for all A 6= B ∈ F , |A ∩ B| ∈ L
mod p and |A| /∈ L mod p, then |F| ≤

∑|L|
i=0

(
n
i

)
.

2 Ramsey Graphs

An undirected graph on n vertices is called k-Ramsey if it does not have an independent set or
clique of size k. Note that if a graph is k-Ramsey, then it is also (k+ 1)-Ramsey. How small can k
be as a function of the number of vertices n?

In one of the first illustrations of the probabilistic method, Erdős showed the following theorem:

Theorem 4. A random graph on n vertices is 2 log n-Ramsey with high probability.
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Proof The probability that any fixed set of size k is a clique or independent set is exactly 2−(k2)+1.
Thus, by the union bound, the probability that there is any clique or independent set of size k is
at most

2−(k2)+1

(
n

k

)
≤ 2−k

2/2+k/2+1(en/k)k = 2−k
2/2+k/2+1+k logn−k log k+k log e.

When k = 2 log n, this is 2−2 logn log logn+logn+1+2 log(en), which tends to 0 as n tends to infinity.

Can we construct such a graph deterministically with a fast algorithm? Frankl and Wilson gave
the following construction based on Fisher’s inequalities: For a prime p > 2, the vertices of the

graph are
( [p3]
p2−1

)
(namely subsets of [p3]) of size p2 − 1. There is an edge between A,B if and only

if |A ∩B| = −1 mod p.

Theorem 5. The graph constructed above is k-Ramsey for k =
∑p−1

i=0

(
p3

i

)
.

Proof If there is an independent set S, for A 6= B ∈ S, |A∩B| ∈ {0, 1, 2, . . . , p− 2} mod p, and
further, |A| = −1 mod p. Thus, by Theorem 3, |S| ≤ k.

On the other hand, if S is a clique, then for A 6= B ∈ S, |A∩B| ∈ {p−1, 2p−1, . . . , p2−p−1},
which is a set of size p− 1. So by Theorem 2, |S| ≤ k.

In the above theorem, k ≤ pO(p) = 2O(p log p) and n = pΩ(p2) = 2Ω(p2 log p). Thus we obtain a
k-Ramsey graph with k ≈ 2

√
logn, which is much larger than the k ≈ 2log logn promised by the

probabilistic method. A few years ago, Barak, Rao, Shaltiel and Wigderson improved this to give
an algorithm with better performance.

Theorem 6 (BRSW). There is a polynomial time algorithm that computes the adjacency matrix

of a size n graph that is 2(logn)o(1)-Ramsey.

Unfortunately, this algorithm is much more complicated than the construction of Frankl and
Wilson.

3 Bounds on Besicovitch Sets

Let F be a finite field of size q. A set S ⊂ Fn is called a Besicovitch set if it contains a line in every
direction, i.e. for every x ∈ Fn, there exists a y ∈ Fn such that the line {tx+ y : t ∈ F} ⊆ S. How
small can such a set be? We give a proof by Dvir.

Theorem 7. |S| ≥
(
q−1+n
n

)
.

Proof Fix any such set S with |S| <
(
q−1+n
n

)
. Then consider the space of degree q−1 polynomials.

This is a space of dimension
(
q−1+n
n

)
. We claim that there must be a non-zero polynomial g in

this space such that g maps every point of S to 0. Indeed, the constraint that g(x) = 0 is a linear
constraint on the coefficients of g. Since the number of coefficients is more than the number of
constraints, there must be some non-zero setting of coefficients that satisfies all constraints1.

1If this argument is not clear, consider the matrix M whose rows correspond to points of S, columns corresponds
to coefficients of a polynomial from the space, and the Mi,j is the evaluation of the j’th monomial on the i’th element
of S. Thus, for a column vector A, the product MA denotes the evaluation of the polynomial that corresponds to
the coefficients A at the points of S. Since the number of rows of M is less than the number of columns, the columns
are not linearly independent, and so there must be a non-zero A such that MA = 0.
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Thus, there is a non-zero polynomial g of total degree d ≤ q − 1 such that for fixed x there
exists y for which L = {t · x+ y : t ∈ F}, g(L) = 0. Since g(t · x+ y) is a univariate polynomial of
degree at most d, and this polynomial has q roots, it must be the 0 polynomial.

Now consider the degree d coefficient of g(t · x+ y) (as a univariate polynomial in t). Let gd be
the degree d homogenous part of g. Then the degree d coefficient of g(t·x+y) is exactly gd(x). Thus
gd(x) = 0 for every x ∈ Fn, so by Lemma 1, gd must be the 0 polynomial, which is a contradiction.
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