Lecture 14 Bounds by Counting Dimensions

Lecturer: Anup Rao

1 Multivariate Polynomials

The following lemma generalizes the fact that there is a bijection between univariate polynomials of degree d and their evaluations on $d+1$ points, the case of multivariate polynomials.

Lemma 1. If $S_{1}, S_{2}, \ldots S_{n} \subset \mathbb{F}$ are all sets of size $d+1$, and P_{d} is the set of polynomials whose degree in any variable is at most d, then there is a bijection between polynomials $p \in P_{d}$, their evaluations $\mathbb{F}^{(d+1)^{n}}$, where the coordinates of the evaluations are indexed by elements of $S_{1} \times \cdots \times S_{n}$, and the coordinate that corresponds to x is $p(x)$.

Proof We shall show that the map from polynomials to evaluations is a full rank linear transformation. Given any point $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in S_{1} \times \cdots \times S_{n}$, we define the polys $f_{i}\left(X_{i}\right)=$ $\prod_{\alpha \in S_{i}, \alpha \neq \alpha_{i}} \frac{X_{i}-\alpha}{\alpha_{i}-\alpha}$. And define $f_{\alpha}=\prod_{i} f_{i}\left(X_{i}\right)$. This is a polynomial whose degree in each variable is at most d, and for $\beta \in S_{1} \times \cdots \times S_{n}$,

$$
f_{\alpha}(\beta)= \begin{cases}1 & \text { if } \alpha=\beta \\ 0 & \text { else }\end{cases}
$$

Thus the rank of the evaluation map is full.
Last time, we used polynomials to prove the following theorem:
Theorem 2. If \mathcal{F} is a family of sets such that for all $A \neq B \in \mathcal{F},|A \cap B| \in L$, then $|\mathcal{F}| \leq \sum_{i=0}^{|L|}\binom{n}{i}$.
Without much additional work, you will prove the following in homework:
Theorem 3. If \mathcal{F} is a family of sets and p is a prime such that for all $A \neq B \in \mathcal{F},|A \cap B| \in L$ $\bmod p$ and $|A| \notin L \bmod p$, then $|\mathcal{F}| \leq \sum_{i=0}^{|L|}\binom{n}{i}$.

2 Ramsey Graphs

An undirected graph on n vertices is called k-Ramsey if it does not have an independent set or clique of size k. Note that if a graph is k-Ramsey, then it is also $(k+1)$-Ramsey. How small can k be as a function of the number of vertices n ?

In one of the first illustrations of the probabilistic method, Erdős showed the following theorem:
Theorem 4. A random graph on n vertices is $2 \log n$-Ramsey with high probability.

Proof The probability that any fixed set of size k is a clique or independent set is exactly $2^{-\binom{k}{2}+1}$. Thus, by the union bound, the probability that there is any clique or independent set of size k is at most

$$
2^{-\binom{k}{2}+1}\binom{n}{k} \leq 2^{-k^{2} / 2+k / 2+1}(e n / k)^{k}=2^{-k^{2} / 2+k / 2+1+k \log n-k \log k+k \log e}
$$

When $k=2 \log n$, this is $2^{-2 \log n \log \log n+\log n+1+2 \log (e n)}$, which tends to 0 as n tends to infinity.
Can we construct such a graph deterministically with a fast algorithm? Frankl and Wilson gave the following construction based on Fisher's inequalities: For a prime $p>2$, the vertices of the graph are $\binom{\left[p^{3}\right]}{p^{2}-1}$ (namely subsets of $\left[p^{3}\right]$) of size $p^{2}-1$. There is an edge between A, B if and only if $|A \cap B|=-1 \bmod p$.
Theorem 5. The graph constructed above is k-Ramsey for $k=\sum_{i=0}^{p-1}\binom{p^{3}}{i}$.
Proof If there is an independent set S, for $A \neq B \in S,|A \cap B| \in\{0,1,2, \ldots, p-2\} \bmod p$, and further, $|A|=-1 \bmod p$. Thus, by Theorem $3,|S| \leq k$.

On the other hand, if S is a clique, then for $A \neq B \in S,|A \cap B| \in\left\{p-1,2 p-1, \ldots, p^{2}-p-1\right\}$, which is a set of size $p-1$. So by Theorem $2,|S| \leq k$.

In the above theorem, $k \leq p^{O(p)}=2^{O(p \log p)}$ and $n=p^{\Omega\left(p^{2}\right)}=2^{\Omega\left(p^{2} \log p\right)}$. Thus we obtain a k-Ramsey graph with $k \approx 2^{\sqrt{\log n}}$, which is much larger than the $k \approx 2^{\log \log n}$ promised by the probabilistic method. A few years ago, Barak, Rao, Shaltiel and Wigderson improved this to give an algorithm with better performance.

Theorem 6 (BRSW). There is a polynomial time algorithm that computes the adjacency matrix of a size n graph that is $2^{(\log n)^{o(1)}}$-Ramsey.

Unfortunately, this algorithm is much more complicated than the construction of Frankl and Wilson.

3 Bounds on Besicovitch Sets

Let \mathbb{F} be a finite field of size q. A set $S \subset \mathbb{F}^{n}$ is called a Besicovitch set if it contains a line in every direction, i.e. for every $x \in \mathbb{F}^{n}$, there exists a $y \in \mathbb{F}^{n}$ such that the line $\{t x+y: t \in \mathbb{F}\} \subseteq S$. How small can such a set be? We give a proof by Dvir.
Theorem 7. $|S| \geq\binom{ q-1+n}{n}$.
Proof Fix any such set S with $|S|<\binom{q-1+n}{n}$. Then consider the space of degree $q-1$ polynomials. This is a space of dimension $\binom{q-1+n}{n}$. We claim that there must be a non-zero polynomial g in this space such that g maps every point of S to 0 . Indeed, the constraint that $g(x)=0$ is a linear constraint on the coefficients of g. Since the number of coefficients is more than the number of constraints, there must be some non-zero setting of coefficients that satisfies all constraints ${ }^{1}$.

[^0]Thus, there is a non-zero polynomial g of total degree $d \leq q-1$ such that for fixed x there exists y for which $L=\{t \cdot x+y: t \in \mathbb{F}\}, g(L)=0$. Since $g(t \cdot x+y)$ is a univariate polynomial of degree at most d, and this polynomial has q roots, it must be the 0 polynomial.

Now consider the degree d coefficient of $g\left(t \cdot x+y\right.$) (as a univariate polynomial in t). Let g_{d} be the degree d homogenous part of g. Then the degree d coefficient of $g(t \cdot x+y)$ is exactly $g_{d}(x)$. Thus $g_{d}(x)=0$ for every $x \in \mathbb{F}^{n}$, so by Lemma $1, g_{d}$ must be the 0 polynomial, which is a contradiction.

[^0]: ${ }^{1}$ If this argument is not clear, consider the matrix M whose rows correspond to points of S, columns corresponds to coefficients of a polynomial from the space, and the $M_{i, j}$ is the evaluation of the j 'th monomial on the i 'th element of S. Thus, for a column vector A, the product $M A$ denotes the evaluation of the polynomial that corresponds to the coefficients A at the points of S. Since the number of rows of M is less than the number of columns, the columns are not linearly independent, and so there must be a non-zero A such that $M A=0$.

