
CSE599s: Extremal Combinatorics November 21, 2011

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

Lecturer: Anup Rao

1 An Arithmetic Circuit Lower Bound

An arithmetic circuit is just like a boolean circuit, except that the gates are either multiplication
or addition gates, and the inputs are either variables or constants. Formally, it is a directed acyclic
graph where every vertex has in-degree (aka fan-in) 2 or 0, each vertex (aka gate) of in-degree 0
is labeled by a variable or a field element, and every other vertex is labeled either + or ×. The
fan-out of a gate is its out-degree.

We say that a circuit computes the polynomial p(X1, . . . , Xn) if there is gate in the circuit
whose evaluation gives the polynomial p(X1, . . . , Xn). Note that although every function from
Fn
2 → F2 can be represented as a polynomial, and multiplication and addition (over F2) can be

used to simulate any boolean function on 2 bits, it is harder to design a small arithmetic circuit
for computing a particular polynomial than it is to design a boolean circuit that computes the
corresponding function. This is because many polynomials can evaluate to the same function on
Fn
2 → F2. For example, the polynomial (X + Y)(X + Z) evaluates to the same function as the

polynomial X + Y + Z + Y Z, so if you want to compute the function X + Y + Z + Y Z, you can
do it with three gates, even though computing the polynomial requires 4 gates. A boolean circuit
can choose to evaluate the “easiest” polynomial, and so be of smaller size. Indeed, this restriction
allows us to prove stronger lower bounds on arithmetic circuits, and gives us more techniques to
attack them.

Suppose we want to compute the polynomial Xd. This can be done by repeatedly squaring
X with a circuit of size log d. It is easy to see that this construction is tight: each additional
gate can at most double the degree of the polynomials computed by the circuit, so at least log d
multiplications are needed to get degree d.

What about if we want a circuit that simultaneously computes each of the polynomials
Xd

1 , X
d
2 , X

d
3 , . . . , X

d
n? One way to do this is to compute each one separately, for a total size of

n log d. Is this the best one can do?

Theorem 1 (Bauer and Strassen). Any arithmetic circuit computing Xd
1 + Xd

2 + . . . + Xd
n must

use Ω(n log d) wires.

In particular, we get the following easy corollary:

Corollary 2. Any arithmetic circuit computing each of Xd
1 , X

d
2 , . . . , X

d
n must use Ω(n log d) wires.

There are two parts to the proof of Theorem 1. First we prove Corollary 2. Then we show
that any size s circuit that computes Xd

1 + . . .+Xd
n can be used to obtain a size O(s+ n) circuit

computing Xd
1 , X

d
2 , . . . , X

d
n. Actually you can show that any circuit that computes a polynomial p

can be used to obtain a circuit that computes all the partial derivatives of p in similar size, which
gives what we want. Here we shall just prove the first part with a proof due to Smolensky that is
based on dimension counting.

15 An Arithmetic Circuit Lowerbound and Flows in Graphs-1

Suppose that there is some circuit C with s wires that computes Xd
1 , . . . , X

d
n. For a polynomial

r(Y ;Z) in variables partitioned into two lists Y, Z, we say r has degree (d − 1, 1) if the degree of
any variable in Y is at most d−1 and any variable in Z is at most 1. Given two lists of polynomials
p = p1, . . . , pk ∈ F[X1, . . . , Xn] and q = q1, . . . , q` ∈ F[X1, . . . , Xn], define the set of polynomials

τ(p||q) = {r(p; q) : r has degree (d− 1, 1) }.

We have the following claims:

Claim 3. If f = g × h, then τ(f, p1, . . . , pk||q1, . . . , q`) ⊆ τ(g, h, p1, . . . , pk||q1, . . . , q`).

Indeed, in any degree (d − 1, 1) polynomial r, f t = gtht, so we obtain a new polynomial r′ in
one additional variable that computes the same thing as r.

Claim 4. If f = g + h, then τ(f, p1, . . . , pk||q1 . . . , q`) ⊆ τ(g, h, p1, . . . , pk||q1 . . . q`).

Again, in any degree (d − 1, 1) polynomial r, we can replace f t = (g + h)t and again obtain a
degree (d− 1, 1) polynomial q′ that computes the same thing as q.

Claim 5. τ(f, f, p1, . . . , pk||q1, . . . , q`) ⊆ τ(f, p1, . . . , pk||fd, q1, . . . , q`).

To prove this claim, note that since r has access to two copies of f , it can actually compute
f t for any t ≤ 2(d− 1). To simulate this new computation, it is enough to have access to fd with
degree up to 1 and f with degree up to d− 1.

Claim 6. If a circuit C uses s wires to compute polynomials p1, . . . , pk at k distinct gates, then
there exist at most s polynomials q1, . . . , qs such that τ(p1, . . . , pk||) ⊆ τ(X1, . . . , Xn||q1, . . . , qs).

Proof We prove the claim inductively. Suppose we are working with the space τ(p1, . . . , pk||q1, . . . , qr),
where each pi is a polynomial computed at a distinct gate of the circuit. Suppose p1 is a polynomial
of maximal depth in the circuit (namely it corresponds to the gate that is farthest away from an
input variable). If p1 is equal to Xi for some i, then we are done, since all pi’s must be at depth
0. Otherwise, by Claims 3 or 4, we get that τ(p1, . . . , pk||q1, . . . , qr) ⊆ τ(g, h, p2, . . . , pk||q1, . . . , qr),
where g, h are polynomials computed at gates of lower depth in the circuit. g, h may correspond
to the same gate as one of the pi’s, in which case we apply Claim 5 (possibly twice) to take care of
this duplication. If we repeatedly apply this argument, note that we can apply Claim 5 at most s
times. This proves the claim.

All that remains is to count dimensions. Note that τ(Xd
1 , . . . , X

d
n, X1, . . . , Xn||) is simply the

set of all polynomials in X1, . . . , Xn whose degree in each variable is less than d2. The dimension
of this space is thus (d2)n = d2n. On the other hand, τ(X1, . . . , Xn||q1, . . . , qs) is spanned by a set
of at most 2s · dn polynomials. Thus 2s · dn ≥ d2n ⇒ s ≥ n log d.

2 Schwartz Zippel Lemma

Lemma 7. Let 0 6= p ∈ F[X1, . . . , Xn] be a polynomial of total degree at most d. Then p has at
most d · |F|n−1 roots.

15 An Arithmetic Circuit Lowerbound and Flows in Graphs-2

Proof We proceed by induction on n. The base case is that a univariate polynomial of degree d
can have at most d roots, which we have shown.

If n > 1, let p = gt(X2, . . . , Xn)Xt
1 + gt−1(X2, . . . , Xn)Xt−1

1 + · · · + g0(X2, . . . , Xn). Now
consider what happens when we evaluate p at a random point in (a1, . . . , an) ∈ Fn, by first sampling
X2, . . . , Xn and then sampling X1. By induction, Pr[gt(a2, . . . , an) = 0] ≤ (d − t)/|F|, since it has
total degree d− t. If gt does not vanish, we are left with a univariate non-zero polynomial of degree
t. Thus Pr[p(a1, . . . , an) = 0|gt(a2, . . . , an) 6= 0] ≤ t/|F|. The union bound then completes the
argument.

3 Computing Edge Connectivity

Given a directed graph G and two vertices s, t, and s→ t cut in the graph is a subset of vertices S
such that s ∈ S, t /∈ S. The size of the cut is the number of edges that go from S to the complement
of S. The following is a well known theorem:

Theorem 8 (Max Flow-Min Cut). The maximum number of edge disjoint paths from s to t is the
same the minimum size of an s− t cut.

Proof Suppose the maximum number of edge disjoint paths is k, and the minimum size of an
s→ t cut is c. Then clearly k ≤ c, since each edge disjoint path must cross the cut using a different
edge. Let P be a set of k edge disjoint paths. Then consider the graph GP which is obtained from
G by reversing the direction of each edge involved in a path of P .

If there is a path s→ t path p in GP , then this path can be used to obtain k + 1 edge disjoint
paths from s to t in G as follows. Let EP denote the set of edges involved in the paths P , Rp

denote the set of edges of EP that were used in p in the reverse direction, and Up denote the set of
edges of p that did not come from P . Then it is easy to check that EP ∪ Up −Rp is a set of k + 1
edge disjoint paths.

Thus GP contains no s → t path. Let S denote the set of vertices reachable from s in GP .
There is no edge leaving S in GP . None of the paths in P can enter S from the outside, since
otherwise there would be an edge leaving S in GP . Every edge leaving S in G must be used by a
path of P , or else again there would be an edge leaving S in GP . Thus there must be at most k
edges leaving S, since each path can leave S at most once. This implies that k ≥ c.

We remark that the above theorem can easily be strengthened to the case of weighted directed
graphs, where the weights are viewed as capacities. Then we can talk about flows from s to t,
where a flow is an assignment of non-negative values to edges, such that in every vertex except for
s and t, the flow in is equal to the flow out. Similarly, the size of a cut can be defined to be the
total weight of out going edges that are cut. Essentially the same proof as above can be used to
show that the maximum flow is equal to the size of the minimum cut.

Here we give a beautiful algorithm by Cheung, Lau and Leung for computing the number of
edge disjoint paths. A major selling point of the algorithm is that given a vertex s, it simultaneously
computes the number of edge disjoint paths to all vertices t, with a running time that is faster than
previously known algorithms for doing this. Another advantage is that the algorithm is extremely
simple.

Suppose the graph has n vertices and m edges. We work with a vector space over a finite field
Ft. For every pair of edges e1, e2 in the graph, we sample a uniformly random element ce1,e2 ∈ F.

15 An Arithmetic Circuit Lowerbound and Flows in Graphs-3

For every edge e in the graph, we shall attempt to associate a vector ae ∈ Ft, in such a way that
the following linear constraints are satisfied:

• For the j’th edge e = (s, v) leaving s, if g1, . . . , g` are the edges that come in to s, then

ae =
∑
i

cgi,e · agi + aj ,

where aj denotes the j’th unit vector.

• For every other edge e = (u, v), if g1, . . . , g` are the edges that come in to u, then

ae =
∑
i

cgi,e · agi

We can easily express the above linear constraints using matrices. Let C be the matrix whose
rows and columns are both indexed by the edges such that Ce,e′ = ce′,e. Let A denote the matrix
whose rows are indexed by edges, such that the e’th row is ae. Then the above linear constraints
can be written

A = C ·A+H,

where H is matrix that captures the contributions to the constraints that come from the unit
vectors (it is independent of the ce,e′ ’s). If I − C is invertible, then A = (I − C)−1H.

Lemma 9. I − C is invertible except with probability m/|F|.

Proof Since C is 0 on the diagonal, I−C has ones on the diagonal. Every off-diagonal coordinate
is either 0 or a variable. In other words, when all the constants are chosen to be 0, this matrix is
the identity. Thus the determinant det(I − C) is a non-zero polynomial in the ce,e′ ’s of degree at
most m. By the Schwartz-Zippel lemma, the probability that the determinant vanishes is at most
m/|F|, so it has an inverse except with probability m/|F|.

So with high probability, we get a unique solution A = (I − C)−1H. Next we shall argue that
the number of edge disjoint paths from s to t is equal to the rank of the vectors coming in to t with
high probability. Let At denote the matrix whose rows are the vectors ae for edges e coming in to
t.

Theorem 10. The rank rk(At) is equal to the number of edge disjoint paths from s to t, except
with probability m2/|F|.

Proof Let k be the size of a minimum s− t cut S. Then observe that the vectors for edges that
are outside S can be expressed as linear combinations of vectors associated with the edges leaving
S. Thus, the rk(At) ≤ k.

Consider any set of k edge disjoint paths P from s to t. If we set ce,e′ = 1 for each pair of
edges that are adjacent in P , and set all other constants to 0, then the constraints are satisfied by
the vectors that send a distinct unit vector along each path to t. Thus, in this case At contains k
distinct unit vectors, as rows and so must contain a k×k submatrix of rank k. Call this submatrix
A′t. We shall argue that rk(A′t) = k with high probability.

Indeed, each entry of A = (I −C)−1H is a polynomial of degree m− 1, divided by det(I −C).
Thus det(A′t) is a polynomial of degree at most k(m−1) ≤ m(m−1), divided by det(I−C)k. These

15 An Arithmetic Circuit Lowerbound and Flows in Graphs-4

polynomials do have some setting that gives them a non-zero value, as we saw by considering the
k disjoint paths. By the union bound, the probability that either the numerator or denominators
vanish is at most m(m− 1)/|F|+m/|F|.

The algorithm involves computing A = (I − C)−1H, and then computing the rank of At for
each t.

15 An Arithmetic Circuit Lowerbound and Flows in Graphs-5

