Lecture 16: Ramsey and Hales-Jewett Theorem

Lecturer: Anup Rao

1 Ramsey Numbers

Suppose we color the edges of a complete graph with 2 colors, will there always be a monochromatic triangle? As we have seen, the maximum number of edges in a graph on $2 n$ vertices without a triangle is n^{2} (which is achieved by the complete bipartite graph). Since $(1 / 2)\binom{2 n}{2}=2 n^{2}-n$, each of the color classes may have less than n^{2} edges, so just the number of edges is not enough to guarantee a monochromatic triangle. Nevertheless, it turns out that one can always find a monochromatic triangle, as long as n is large enough. With that in mind, we introduce the Ramsey numbers.

Definition 1. $R_{k}(s, t)$ is the minimum number n such that any coloring of the k-sets of an $[n]$ with red and blue will have either a subset $S \subset[n]$ of size such that every k-set supported on S is colored red, or a subset $T \subset[n]$ of size t such that k-set supported on T is colored blue.

Observe that if $R_{k}(s, t)$ is well defined, then since any coloring of the k-sets of a universe [n] with $n \geq R_{k}(s, t)$ is also a coloring of the k-sets supported on $\left[R_{k}(s, t)\right]$, this coloring must have either a subset of size s whose k-sets are all red or a subset of size t whose k-sets are all colored blue. $R_{k}(s, t)$ clearly always exists when $s=1$ or $t=1$, and we shall prove that $R_{k}(s, t)$ exists for any k, s, t. To prove this, we start by studying the case of $k=2$ (namely undirected graphs).

Theorem 2. $R_{2}(s, t) \leq R_{2}(s, t-1)+R_{2}(s-1, t)$.
Proof Suppose $n=R_{2}(s, t-1)+R_{2}(s-1, t)$, and fix any coloring of the edges. Consider any vertex x. Let

$$
A=\{u:\{x, u\} \text { is colored red }\}
$$

and

$$
B=\{u:\{x, u\} \text { is colored blue }\}
$$

Since $|A|+|B|=R_{2}(s, t-1)+R_{2}(s-1, t)-1$, either $|A| \geq R_{2}(s-1, t)$ or $|B| \geq R_{2}(s, t-1)$. Suppose $|A| \geq R_{2}(s-1, t)$, then A either has a blue clique of size t, in which case, so does the whole graph, or A has a red clique of size $s-1$, but then x together with this clique forms a red clique of size s. The case of $|B| \geq R_{2}(s, t-1)$ is similar.

The recurrence of 2 is satisfied by $\binom{s+t-2}{s-1}$, since $\binom{s+t-2}{s-1}=\binom{s+t-3}{s-1}+\binom{s+t-3}{s-2}$. Note that this is the smallest such expression that is well defined for $s, t \geq 1$. This gives the bound $R_{2}(s, t) \leq\binom{ s+t-2}{s-1}$.

We have already seen that a random graph on n vertices (where each edge is included independently with probability $1 / 2$) will not have any clique or independent set of $\operatorname{size} 2 \log n$ with high probability. That argument can be used to show that $R_{2}(t, t)=\Omega\left(t 2^{t / 2}\right)$. The upper bound from Theorem 2 gives $R_{2}(t, t)=\binom{2 t-2}{t-1}=O\left(4^{t} / \sqrt{t}\right)$.

A similar proof can be used to bound the Ramsey number for sets of larger size:

16: Ramsey and Hales-Jewett Theorem-1

Theorem 3. $R_{k}(s, t) \leq R_{k-1}\left(R_{k}(s-1, t), R_{k}(s, t-1)\right)+1$.
Proof Consider any coloring χ of the k-sets of $\left[n=R_{k-1}\left(R_{k}(s-1, t), R_{k}(s, t-1)\right)+1\right]$ with red and blue. Color every $k-1$ set $A \subset[n-1]$ with the same color that is given to $A \cup n$ in the original coloring, and call the induced coloring Γ. Then by the definition of n, in Γ there must be either a red subset of size $R_{k}(s-1, t)$ or a blue subset of size $R_{k}(s, t-1)$. If there is a red subset of size $R_{k}(s-1, t)$, then in χ, this subset either has a blue subset of size t in which case we are done, or it has a red subset of size $s-1$, in which case adding n gives us a red subset of size s by the definition of the coloring χ. The case of a blue subset of size $R_{k}(s, t-1)$ is the same.

One can generalize what we have seen so far to the case of $r>2$ colors, as follows. We shall imagine coloring the k-sets of an n element universe with different colors. Given such a coloring, and a subset $T \subseteq[n]$, we shall say that T is monochromatic if every k-set of T is colored with the same color.

Definition 4. $R_{k}(r ; s)$ is the minimum n such that for any coloring of k-sets of $[n]$ with r colors there is a monochromatic subset $S \subset[n]$ of size s.

Theorem 5. $R_{k}(r ; s)$ is finite.
Proof We claim that it is enough to prove this for the case that $r=2$. This is because $R_{k}(r ; s) \leq R_{k}\left(r-1, R_{k}(2 ; s)\right)$. Indeed, given any coloring of the k sets of $\left[R_{k}\left(r-1 ; R_{k}(2 ; s)\right)\right]$, let us recolor the sets by identifying the first two colors with each other: we view the coloring as using $r-1$ colors. Then, by definition there must be some monochromatic subset T of size $R_{k}(2 ; s) \geq s$. If the color corresponds to a single color in the original coloring, we are done. Otherwise, every subset of T must be colored with one of the first two colors, but since T is of size $R_{k}(2 ; s), T$ must have a monochromatic subset of size s in the original coloring. So all we need to do is show that $R_{k}(2 ; s)$ is finite, which is immediate from Theorem 3.

Next we see an interesting consequence of the finiteness of Ramsey numbers:
Theorem 6. If n is large enough in terms of r, then any coloring of $\chi:[n] \rightarrow[r]$ will contain monochromatic $x, y, x+y$.

Proof Set $n=R_{2}(r ; 3)$, and color every pair of elements $x, y \in[n]$ with the color $\chi(|x-y|)$. By the definition of $R_{2}(r ; 3)$, there is a monochromatic triangle with vertices $a<b<c$, and so $(a-b)+(b-c)=(a-c)$ forms the monochromatic triple that we were looking for.

2 The Hales-Jewett Theorem

A combinatorial line in $[n]^{k}$ is specified by a root in $\tau \in([n] \cup\{*\})^{k}$. Given this root, and $a \in([n] \cup\{*\})$, let $\tau(a)$ denote the element of $[n]^{k}$ obtained by replacing each $*$ in τ with a. The combinatorial line given by τ is the set $\{\tau(a): a \in[n]\}$. Thus every combinatorial line either has one element (if there are no $*$'s), or n elements. If it has only one element, we shall say that the line (and the corresponding root) is trivial.

Theorem 7. For every $r, n \geq 0$, there is k large enough so that in any coloring of $[n]^{k}$, there must be a nontrivial monochromatic combinatorial line.

16: Ramsey and Hales-Jewett Theorem-2

It is instructive to try and prove the theorem in the case of $n=2$ as a warmup. In this case, we claim that $k=r$ suffices. Indeed, consider the $k+1$ points: $(11 \ldots 1),(211 \ldots 1), \ldots,(22 \ldots 2)$. Then by the pigeonhole principle, in any coloring we must have that there are $j \neq j^{\prime}$ such that $\chi\left(1^{j} 2^{k-j}\right)=\chi\left(1^{j^{\prime}} 2^{k-j^{\prime}}\right)$. But then these two points form a non-trivial monochromatic line. The proof of the general case will use this basic idea as a building block.

Proof We use induction on n. The case of $n=1$ is trivial. For k that we shall set to be large enough during the proof, let $\chi:[n]^{k} \rightarrow[r]$ denote a coloring.

Given any sequence of roots $\tau=\tau_{1}, \ldots, \tau_{t}$ where $\tau_{i} \in([n] \cup\{*\})^{N_{i}}$ and $k=\sum_{i} N_{i}$, and given $a \in[n]^{t}$ given by $a=a_{1}, \ldots, a_{t}$ we define $\tau(a) \in[n]^{k}$ to be $\tau(a)=\tau_{1}\left(a_{1}\right), \ldots, \tau_{t}\left(a_{t}\right)$.

The proof will hinge on the following claim:
Claim 8. There exists such a sequence of non-trivial roots $\tau=\tau_{1}, \ldots, \tau_{t}$ as above, such that for any $i \in[t]$, and any $a_{1}, a_{2}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{t} \in[n]$, we have

$$
\chi\left(\tau\left(a_{1}, \ldots, a_{i-1}, n, a_{i+1}, \ldots, a_{t}\right)\right)=\chi\left(\tau\left(a_{1}, \ldots, a_{i-1}, n-1, a_{i+1}, \ldots, a_{t}\right)\right) .
$$

Let us first show that the claim completes the proof. We shall set t to be large enough (by the induction hypothesis) to guarantee that any coloring of $[n-1]^{t}$ gives a non-trivial monochromatic line. Then we color each $a \in[n-1]^{t}$ with $\chi(\tau(a))$. By induction, this coloring has a monochromatic line $\{\sigma(b): b \in[n-1]\}$ with some root $\sigma \in([n-1] \cup\{*\})^{t}$. Thus we get that the set $\{\tau(\sigma(b))$: $b \in[n-1]\}$ is monochromatic under χ. This is not quite a monochromatic line. However, by the property of τ guaranteed by the claim, we can take the point $\tau(\sigma(n-1))$, and iteratively replace each $n-1$ in a $*$ position with n and stay in the same color. Thus $\tau(\sigma)$ is actually the root of a non-trivial monochromatic line as required.

So all that is left to do is prove the claim. We find the roots of τ inductively. Assume we have found $\tau=\tau_{i}, \tau_{i+1}, \ldots$ such that for every $z \in[n]^{\sum_{j=1}^{i-1} N_{j}}$, the root z, τ_{i}, \ldots, has the neighbor property. Initially, this is true since any trivial root does satisfy the property of the claim.

Now for each $(z, y) \in[n]^{\sum_{j=1}^{j-1} N_{j}} \times[n]^{t-i}$, define the j^{\prime} th color $\chi\left(z, n^{j}(n-1)^{N_{i}-j}, \tau(y)\right)$. In this way, we gave defined $N_{i}+1$ colorings of a set of size at most $n^{t+\sum_{j=1}^{i-1} N_{j}}$. We shall set $N_{i} \geq r^{n^{t+\sum_{j=1}^{i-1} N_{j}}}$. Then by the pigeonhole principle, there must be j, j^{\prime} such that the j^{\prime}, j colorings coincide on all (z, y). These two colorings specify the i 'th root τ_{i}.

We see that for the above argument to work, it is sufficient to have $N_{i} \geq r^{n^{t+\sum_{j=1}^{i-1} N_{j}}}$ for all i, which can easily be satisfied. This completes the proof.

Recall that an arithmetic progression is a sequence of numbers $a, a+d, a+2 d, \ldots, a+(t-1) d$.
Theorem 9. For every r, n, there exists ℓ such that any coloring of $[\ell]$ with r colors has a monochromatic arithmetic progression of length n.

Proof Let k be large enough to satisfy Theorem 7 with parameters r, n, and set $\ell=n k$. Then color each $\left(x_{1}, \ldots, x_{k}\right)$ with the color of $\sum_{i=1}^{k} x_{i}$. Then the non-trivial monochromatic line induced by the coloring corresponds to a monochromatic arithmetic progression of length n.

One of the more spectacular applications of ergodic theory is the proof of the following stronger density version of the Hales-Jewett theorem, which still has no simple combinatorial proof (to my knowledge):

16: Ramsey and Hales-Jewett Theorem-3

Theorem 10 (Density Hales-Jewett Theorem). For every ϵ, n, there is k large enough so that any subset of $[n]^{k}$ of size ϵn^{k} contains a non-trivial monochromatic combinatorial line.

The above theorem has a couple of applications in computer science. In particular, it gives the only known proof of the parallel repetition theorem for multiple provers, but we shall not go into the details here.

